Arifmetik vektorlar va ular ustida amallar n o`lchovli haqiqiy arifmetik fazo. Arifmetik vektor haqida tushuncha



Download 51,5 Kb.
Sana11.09.2021
Hajmi51,5 Kb.
#171428
Bog'liq
2 5357162495561698238


Mavzu: Vektorlar va ular ustida amallar
Reja:
1.Arifmetik vektor haqida tushuncha
2.Arifmetik vector usitda amallar va xosassi

Arifmetik vektorlar va ular ustida amallar
1. n  o`lchovli haqiqiy arifmetik fazo. Arifmetik vektor haqida tushuncha

O`rta maktab matematika kursida real fazo vektorlari – yo`nalishli kesma shaklida tasvirlanishi mumkin bo`lgan geometrik vektorlar va ular ustida amallar o`rganilgan edi. Maktab kursida real (bir, ikki va uch o`lchovli) fazo vektorlari va nuqtalari orasida o`zaro birga-bir moslik borligini uqish muhimdir. Real R3 fazo tushuncha va elementlarini ixtiyoriy n (n ≥ 4, n  N) o`lchovli fazo uchun yoyish yoki umumlashtirish mumkin. n o`lchovli haqiqiy fazo abstrakt - to`qima tushuncha bo`lib, uning vektorlarini yo`nalishli kesma – geometrik vektor shaklida emas, balki arifmetik ifodalash mumkin.

n o`lchovli haqiqiy arifmetik fazo tushuncha va elementlari murakkab, xususan iqtisodiy jarayonlarni matematik tekshirish imkonini be-radi.

n o`lchovli haqiqiy arifmetik fazo deb, mumkin bo`lgan barcha n ta haqiqiy sonlarning tartiblangan tizimlari to`plamiga aytiladi va Rn yozuv bilan belgilanadi.

Har bir alohida olingan x = (x1, x2, …, xn) tizim Rn fazo arifmetik vektori yoki nuqtasi deyiladi. x1, x2, …, xn haqiqiy sonlarga x vektor yoki nuqtaning mos koordinatalari yoki komponentlari deyiladi. Tizim koordinatalari soni n esa x arifmetik vektor yoki nuqta o`lchovi deyiladi.

= (x1, x2, …, xn) vektorning qarama-qarshi vektori deb -x = (-x1, - - x2, …, -xn) vektorga aytiladi. n ta nollardan iborat (0, 0, …, 0) tizimga n o`lchovli nol vektor deyiladi va θ harfi bilan belgilanadi.

Ikki n o`lchovli x = (x1, x2, …, xn) va y = (y1, y2, …, yn) arifmetik vektorlar berilgan bo`lsin.

xi = yi (i = {1,2, … , n}) munosabatlar o`rinli, ya`ni vektorlarning har bir mos koordinatalari o`zaro teng bo`lsa, x va y vektorlarga o`zaro teng vektorlar deyiladi. x va y vektorlarning tengligi x = y ko`rinishda yoziladi.
2. Arifmetik vektorlar ustida chiziqli amallar va ularning xossalari
n o`lchovli arifmetik vektorlar ustida chiziqli amallar quyidagicha bajariladi:


  1. Berilgan x va y vektorlarni qo`shganda ularning mos koordinatalari qo`shiladi: x + y = (x1 + y1; x2 + y2; …; xn + yn).

  2. Berilgan x vektorni k haqiqiy songa ko`paytirganda uning har bir koordinatasi k marta ortadi: kx = (kx1; kx2; …; kxn).

Vektorlar ustida chiziqli amallar quyidagi xossalarga bo`ysinadi:
1) x + y = y + x; 5) (α + β) x = α x + β x;

2) x + (y + z) = (x + y) + z; 6) α (β x) = (α β) x;

3) x + (- y) = x y ; 7) x + θ = x;

4) α (x + y) = α x + α y; 8) x 1 = x ,


bu yerda, x, y va z – arifmetik vektorlar, α va β esa haqiqiy sonlar.


  1. Arifmetik vektorlarning skalyar ko`paytmasi. Vektor uzunligi

Skalyar ko`paytma xossalari
Berilgan x = (x1; x2; …; xn) va y = (y1; y2; …; yn) arifmetik vektorlarning skalyar ko`paytmasi deb, vektorlar mos koordinatalari ko`paytmalarining yig`indisiga teng songa aytiladi va (x, y) shaklda yoziladi. Ta`rifga binoan,

(x, y) = x1y1 + x2y2 + …+ xnyn yoki

Berilgan x = (x1; x2; …; xn) vektorning moduli yoki uzunligi (normasi) deb, quyidagi formula bo`yicha aniqlanadigan nomanfiy |x| songa aytiladi:

yoki .

Vektorlarning skalyar ko`paytmasi quyidagi xossalarga bo`ysinadi:


1) (x, x) ≥ 0 , 3) (x, y + z) = (x, y) + (x, z),

2) (αx, y) = α(x, y), 4) (x, y) = (y, x).


4. Koshi-Bunyakovskiy tengsizligi. Vektorlar orasidagi burchak. Uchburchak tengsizligi

Skalyar ko`paytma xossalaridan foydalanib, quyidagi Koshi–Bu-nyakovskiy tengsizligini isbotlash mumkin:


|(x, y)| ≤ |x| |y|.
Tengsizlik bo`yicha x va y vektorlar skalyar ko`paytmasi absolut qiymati vektorlar modullari ko`paytmasidan katta emas.

Koshi–Bunyakovskiy tengsizligi koordinatalarda



ko`rinishda yoziladi. Shunday bir yagona λ = cos φ  [-1; 1] (φ[0;π]) son tanlash mumkinki, bunda
(x, y) = |x| |y| cosφ (φ  [0; π]).
tenglik o`rinli bo`ladi. Oxirgi tenglikdan real fazoda bo`lgani kabi, abstrakt Rn fazoda ham uning x va y arifmetik vektorlari orasidagi burchak haqida gapirish mumkin va uning kattaligi kosinusini aniqlash mumkin:


Rn fazoda ham uchburchak yoki Minkovskiy tengsizligi deb ataluvchi
|x + y| ≤ |x| + |y|
tengsizlik o`rinli.
Download 51,5 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish