Aniq va tabiiy fanlar metodikasi


TO'PLAMLARNING KESISHMASI VA UNING XOSSALARI



Download 396,5 Kb.
bet8/14
Sana29.12.2021
Hajmi396,5 Kb.
#74444
1   ...   4   5   6   7   8   9   10   11   ...   14
Bog'liq
O2

4 TO'PLAMLARNING KESISHMASI VA UNING XOSSALARI.

Ikkita to'plam berilgan bo'lsin: A={a;b;c;d} va B={c;d;e}.A va B to'plamga tegishli bo'lgan umumiy elementlardan iborat yangi P to'plamni tuzamiz. P={c;d} . P to'plam A va B to'plamlarning kesishmasidan iborat.

Ikki to'plamning umumiy elementlaridan tashkil topgan uchinchi to'plamga to'plamlarning kesishmasi deb aytiladi. A n B deb belgilanadi. Bu erda n simvoli to'plamlar kesishmasining belgisidir. A n B to'plamning har qanday x elementi "x e A" va "xe B" xossasiga ega, shunga ko'ra to'plamlar kesishmasini quyidagicha yozish mumkin: A n B={x/xe A va xe B}

Agar A va В to'plamlar umumiy elementga ega bo'lmasa, u holda bu to'plamlar kesishmaydi va A ^ B= 0 deb yoziladi. Masalan, bir xonali va ikki xonali natural sonlar to'plami kesishmaydi.

Agar A va В to'plamlar kamida bitta umumiy elementga ega bo'lsa, bu to'plamlar kesishmasi 0 to'plam bo'lmaydi va A r\ В ^ 0 yoziladi.

Eyler-Venn diagrammasida to'plamlar kesishmasi quyidagicha ifodalanadi:




INCLUDEPICTURE "C:\\Users\\User\\Documents\\media\\image9.jpeg" \* MERGEFORMATINET


To'plamlar kesishmasining xossalari:



  1. Istalgan A va B to'plamlar uchun to'plamlar kesishmasi kommutativdir, ya'ni A n B=B n A

  2. Ixtiyoriy A,B,C to'plamlar uchun to'plamlar kesishmasi assotsiativdir.

(A n B) n C = A n (B n C)

Bu xossa An B n C ifodani qavssiz yozishga imkon beradi, shuningdek, istalgan sonli to'plam kesishmasini topishda ham xossadan keng foydalaniladi.

Isboti: To'plam osti munosabatining 1- xossasidan foydalanamiz, ya'ni "Agar B ^ A va A ^ B bo'lsa, u holda A=B bo'ladi. xe (A n B)n C bo'lsin, kesishma ta'rifiga asosan x e An B va xeC; yana bir marotaba to'plamlar kesishmasi ta'rifini qo'llab x e A va xeB, xeC yoki xe A, xeB va xeC ni hosil qilamiz. Bundan xeA va xeBnC, bundan xe An (BnC).Demak, (A n B) n C to'plamning har qanday elementi A n (B n C) to'plamining ham elementi bo'ladi, to'plam osti ta'rifiga ko'ra (A n B)n C ^ A n (B n C). Xuddi shunga o'xshash A n (B n C) ^ (A n B)n C ni ham ko'rsatish mumkin. Yuqorida aytilgan to'plam osti munosabati xossasiga ko'ra to'plamlar kesishmasining assotsiativlik xossasi tasdiqlanadi: (A n B) n C

= A n (B n C)



  1. xossa: Agar A ^ B bo'lsa, u holda A n B=A. Haqiqatdan ham , agar A­B to'plamning to'plam ostisi bo'lsa, bu to'plamlar orasidagi munosabat Eyler - Venn doirasida quyidagicha tasvirlanadi.


INCLUDEPICTURE "C:\\Users\\User\\Documents\\media\\image10.jpeg" \* MERGEFORMATINET


A va B ga tegishli elementlar A to'plamning elementlari hisoblanadi, ya'ni A n B=A.



  1. xossa: Istalgan A to'plam uchun quyidagi yozuv o’rinli:

A^A=A; A^ 0=0; A^J=A; Jn0=0.


Download 396,5 Kb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   ...   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish