“Amaliy matematika va informatika” yo’nalishi


§. Doiraviy membrananing tebranishi



Download 0,57 Mb.
bet4/5
Sana13.06.2022
Hajmi0,57 Mb.
#662043
1   2   3   4   5
Bog'liq
dif kurs ishi2

3 §. Doiraviy membrananing tebranishi


Radiusi R ga teng, markazi koordinata boshidan bo’lgan va chetlari mustahkamlangan doiraviy membrananing erkin tebranishlarini tekshirish (1) tenglamaning (2) boshlang’ich shartlarini hamda
(26)
chegaraviy shartni qanoatlantiruvchi yechimni topishga keladi. Bu masalani o’rganishda tenliklar bilan aniqlanadigan qutb koordinatalarida ushbu

ko’rinishga ega bo’ladi. Bunga (1), (2), (26) masala quyidagicha yoziladi:
(27)
(28)
(29)
Bu masalani yechish uchun o’zgaruvchilarni ajratish usulini qo’llaymiz:

Noma’lum funksiyani aniqlash uchun

tenglama hosil bo’ladi. Bu tenglamaning umumiy yechimi

ko’rinishga ega. funksiya uchun ushbu
. (30)
(31)
chegaraviy masalani hosil qilamiz. Bu masalaning yechimini
(32)
ko’rinishida izlaymiz.
Bu ifodani (30) tenglamaga qo’yib,

tenglikni hosil qilamiz. Bundan
, (33)
(34)
funksiya da nolga aylanishi va da chegaralangan bo’lishi kerak, buni etiborga olib,
(35)
chegaraviy shartga kelamiz. funksiya bir qiymatli bo’lishi uchun (32) dan ko’rinyaptiki bir qiymatli bo’lishi zarur, ya’ni davrli davriy funksiya

bo’lishi kerak.Bu esa, o’z navbatida (34) tenglamadagi o’zgarmas , bunda n-ixtiyoriy butun son, bo’lishi kerakligini ko'rsatadi. Shu sababli, (34) tenglamaning umumiy yechimi
,
ko’rinishga ega bo’ladi, bu yerda -ixtiyoriy haqiqiy o’zgarmaslar. Endi (33) tenglamaga qaytamiz. Bu tenglamaga Bessel tenglamasidan iborat bo’lib, uning yechimi da

ko’rinishga ega bo’ladi. funksiya (35) shartga binoan da nolga teng bo’lib, da chegaralangan bo’lishi kerak. funksiya esa cheksizlikka aylanadi. Shu sababli, deb hisoblashimiz zarur. (35) ning ikkinchi shartiga ko’ra , bo’lgani uchun
.
belgilashni kiritsak, ni aniqlash uchun

transstendent tenglamaga ega bo’lamiz. Ma’lumki, bu tenglamaning cheksiz ko’p musbat

ildizlari bor. Bu ildizlarga

qiymatlar mos keladi. (33), (35) masalaning mos yechimlari ushbu

ko’rinishga ega bo’ladi. U holda (30), (31) chegaraviy masalaning

xos qiymatiga ikkita chiziqli bog’liq bo’lmagan


xos funksiyalar mos keladi.
Yuqorida bayon qilinganlarga asosan (27) tenglamaning (29) chegaraviy shartni qanoatlamtiruvchi quyidagi ko’rinishidagi cheksiz ko’p xususiy yechimlarini tuzish mumkin:
.
Boshlang’ich (28) shartlarni qanoatlantirish uchun ushbu
(36)
qatorni tuzamiz. Bu qatorning koeffisientlari boshlang’ich shartlarga asosan aniqlanadi.Haqiqatan ham, (36) qatorda t=0 deb hisoblab,

qatorni hosil qilamiz. Bu qator davriy funksiyaning oraliqda Fur’e qatoriga yoyilmasidan iboratdir. Demak, va funksiyalar oldidagi ko’paytmalar Fur’e koeffisientlaridan iborat bo’lishi kerak:



Bu tengliklarni ko’rib chiqsak, ular ixtiyoriy funksiyaning Bessel funksiyalari bo’yicha

yoyilmasidan iborat ekanligiga ishonch hosil qilamiz.
Avvalgi bobda ko’rsatgan edikki, koeffisientlar ushbu

formula bilan aniqlanadi.
Bu formulaga asosan
(37)
(38)
. (39)
Xuddi shunga o’xshash , , , koeffisientlarni aniqlaymiz. Faqat bunda(37), (38) va (39) formulalarda ni ga almashtirib, mos ifodalarni ga bo’lish kerak. Koeffisientlarning topilgan qiymatlarini (36) qatorga qo’yib, tekshirilayotgan masalaning yechimini topamiz.
Shunday qilib, doiraviy membrananing (27), (28), (29) tebranish masalasi, (36) qatorni va o’zgaruvchilar bo’yicha ikki marta hadlab differensiallash mumkin deb, yoki shuning o’zi, berilgan boshlang’ich shartlardagi funksiyalar tez yaqinlashuvchi Fur’e qatorlariga yoyiladi deb hisoblaganimizda yechiladi.

Download 0,57 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish