3. Понятие алгебры логики. Морфизмы. Конгруэнции. Фактор-алгебры 4


Пример. Пусть А = «Сегодня пасмурно», тогда А = «Сегодня не пасмурно». И



Download 1,85 Mb.
bet3/4
Sana27.01.2023
Hajmi1,85 Mb.
#903622
1   2   3   4
Bog'liq
Дискрет сам.работа 1.2.3.4.5.6

Пример. Пусть А = «Сегодня пасмурно», тогда А = «Сегодня не пасмурно».
И Операция, выражаемая связкой «и», называется конъюнкцией (лат. conjunctio – соединение) или логическим умножением и обозначается точкой « • » (может также обозначаться знаками или &). Высказывание А • В истинно тогда и только тогда, когда оба высказывания А и В истинны.
Пример. Высказывание «Число 6 делится на 2, и число 6 делится на 3» - истинно, а высказывание «Число 6 делится на 2, и число 6 больше 10» - ложно.
ИЛИ Операция, выражаемая связкой «или» (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio – разделение) или логическим сложением и обозначается знаком (или плюсом). Высказывание А В ложно тогда и только тогда, когда оба высказывания А и В ложны.
Биномиальные коэффициенты. Треугольник Паскаля
Чтобы понять бином Ньютона, нам понадобится треугольник Паскаля.
Что такое треугольник Паскаля
Треугольник Паскаля — это одно из названий треугольной таблицы чисел. Его назвали в честь математика Блеза Паскаля, но про такой треугольник математики знали тысячу лет назад.
Работает треугольник так: берём единицу (это будет вершина треугольника), а все остальные числа в каждом ряду получаем сложением левых и правых чисел, которые стоят выше. Если нарисовать, то получится так:
Такой треугольник можно продолжать бесконечно. В математике этот треугольник обладает разными полезными свойствами, но нам он нужен для биномиальных коэффициентов в биноме Ньютона. Вот теперь поговорим про бином.
Что такое бином Ньютона (просто)
Бином Ньютона — это формула, которая помогает посчитать сумму двух чисел, возведенную в какую-то степень.
Разбираем по полочкам:
  • У нас есть некие числа a и b. Мы не знаем какие, потому что алгебра.
  • Не зная, что это за числа, мы их складываем.
  • Эту сумму почему-то очень хочется возвести в какую-то степень — в квадрат, в куб, в четвертую, хоть в девятьсот девяносто девятую — алгебре плевать на ваши чувства.
  • Нам нужна формула, как это сделать.

Из школьной программы мы помним такую формулу: (a + b)2 = a2 + 2ab + b2 — это частный случай бинома Ньютона для квадрата суммы.
Может быть, вы помните сумму в кубе: (a + b)3 = a3 + 3a2b + 3ab2 + b3 — это тоже бином Ньютона.
А что если нам нужно возвести сумму не в квадрат, не в куб, а в сто сорок шестую степень? Какая тогда будет формула? Вот для этого нам нужна более обобщенная формула, которая опишет вообще все варианты биномов для любой степени.
Исходя из этой адской формулы для расчета бинома на компьютере нам нужно будет много раз посчитать факториал — это произведение всех целых чисел от единицы до заданного числа. Например, 5! = 1 × 2 × 3 × 4 × 5 = 120. А факториалы в силу своей цикличности жрут довольно много оперативной памяти. Может так получиться, что мы не сможем посчитать коэффициенты бинома, потому что закончилась оперативка.
Но, оказывается, необязательно считать факториалы — есть способ проще.
Биномиальные коэффициенты и треугольник Паскаля (простая теория в картинках)
Тут нам приходит на помощь треугольник Паскаля. Оказывается, числа в каждом ряду — это биномиальные коэффициенты для каждой степени n:
На практике это работает так: допустим, что по ходу работы алгоритма нам нужно раскрыть скобки и вычислить (x + y)⁴. Применим сюда бином Ньютона и треугольник Паскаля:
Получается, что с помощью этого треугольника можно не считать все эти формулы с факториалами, а быстро находить нужные коэффициенты, подставлять их в формулу бинома и сразу получать ответ. Так можно разложить любой бином и получить ответ гораздо быстрее, чем вычисляя все факториалы подряд.
Производящие функции
Математика делится на два мира — дискретный и непрерывный. В реальном мире есть место и для того и для другого, и часто к изучению одного явления можно подойти с разных сторон. В этой статье мы рассмотрим метод решения задач с помощью производящих функций — мостика ведущего из дискретного мира в непрерывный, и наоборот. Идея производящих функций достаточно проста: сопоставим некоторой последовательности — дискретному объекту, степенной ряд g0 + g1z + g2z2 +… + gnzn +… — объект непрерывный, тем самым мы подключаем к решению задачи целый арсенал средств математического анализа. Обычно говорят, последовательность 
Download 1,85 Mb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish