3-ma’ruza Funksiyaning uzluksizligi. Tekis uzluksizlik



Download 179,74 Kb.
bet4/5
Sana08.12.2022
Hajmi179,74 Kb.
#881247
1   2   3   4   5
Bog'liq
3-ma’ruza Funksiyaning uzluksizligi. Tekis uzluksizlik

Uzluksizlik .matematik tahlilning asosiy tushunchalaridan biridir. Matematika uzluksiz funksiya tushunchasiga birinchi navbatda turli harakat qonunlarini o’rganish natijasida keldi. Fazo va vaqt uzluksiz, masalan: harakatdagi nuqtaning bosib o’tgan yo’li ning vaqtga bog’lanishini ifodalovchi qonun uzluksiz funksiyaga misol bo’ladi.
Qattiq jismlar, suyuqlik va gazlardagi holatlar hamda jarayonlar uzluksiz funksiyalar yordamida tavsiflanadi. Bunday uzluksiz jarayonlar iqtisodiyot modellarida ham mavjud. Bunday jarayonlar mexanika fizika va bir qancha maxsus fanlarda muayyan holda o’rganiladi.
Matematikada uzluksiz jarayonni umumiy holda o’rganamiz.
Funksiya orttirmasi. funksiya biror kesmada aniqlangan va shu kesmadagi biror nuqta bo’lsin. argumentning keyingi qiymati bo’lsa, ga argument orttirmasi deyiladi (1-chizma).



y











y











x

















O

O



x

1-chizma 2-chizma




funksiyaning qiymatlari orasidagi farqqa funksiya orttirmasi deyiladi va odatda bilan belgilanadi. yoki .
1-chizmadan ko’rinadiki da bo’ladi.
1-misol. funksiyaning nuqtada argument orttirma olgandagi funksiya orttirmasini toping.
Yechish. funksiyaning boshlang’ich nuqtadagi qiymati. funksiyaning keyingi qiymati, demak, funksiya orttirmasi

bњladi.
Shunday qilib, .
2. Funksiya uzluksizligi ta’riflari. 1-ta’rif. funksiya nuqtada va uning biror atrofida aniqlangan bo’lib, argumentning nuqtadagi cheksiz kichik orttirmasiga funksiyaning ham cheksiz kichik orttirmasi mos kelsa, ya’ni

bo’lsa, funksiya nuqtada uzluksiz deyiladi (2-chizma). Bu ta’rifga qo’yidagi ta’rif ham teng kuchlidir.
2-ta’rif. nuqtada va uning biror atrofida aniqlangan funksiya shu nuqtada chekli limitga ega bo’lib, bu limit funksiyaning nuqtadagi qiymatiga teng, ya’ni

bo’lsa, funksiya nuqtada uzluksiz deyiladi.
Funksiya uzluksizligi ta’riflari quyidagi shartlarni o’z ichiga oladi:

  1. funksiya nuqtada va uning biror atrofida aniqlangan;

2) funksiyaning nuqtadagi chap va o’ng limitlari

mavjud;
3) nuqtada chap va o’ng limitlar o’zaro teng, ya’ni


  1. chap va o’ng limitlar funksiyaning nuqtadagi qiymatiga teng, ya’ni


2-misol. funksiyaning nuqtada uzluksizligini tekshiring.
Yechish. Ma’lumki, funksiya nuqtada va uning istalgan atrofida aniqlangan. Uzluksizlikni 1-ta’rifga asosan tekshiramiz. Buning uchun nuqtadagi funksiya orttirmasini topamiz:

argument orttirmasi ga intilganda limitga o’tamiz.


.
Shunday qilib, da nuqtada , bu esa 1-ta’rifga asosan funksiya uzluksiz ekanligini bildiradi. Bu misolda nuqta o’rniga ixtiyoriy nuqtani olish mumkin(masalan, uchun uzluksizlikni tekshiring).
Funksiya oraliqning hamma nuqtalarida uzluksiz bo’lsa, u shu oraliqda uzluksiz deyiladi.
2-misolda funksiya oraliqning hamma nuqtalarida uzluksizligi ravshan. Demak, funksiya oraliqda uzluksiz funksiyadir.

Download 179,74 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish