Annotation.
In this work, an algorithm and software were developed for solving problems based
on the initial and boundary conditions for the two-dimensional equation of convective-diffusion transfer.
The numerical results of the above equations were obtained using the developed software, and graphs
were built on the basis of these solutions. The parameters of these equations were changed as needed and
the solutions were compared.
Keywords:
Heat dissipation equation, Progonka method, boundary value problem.
1,2
Toshkent davlat iqtisodiyot universiteti Samarqand filiali. Assistant.
1
E-mail:
AxrorAdilov0101@gmail.com
Tel: +998933544999
2
E-mail:
golibjon.ismoilov.tdtu@gmail.com
Tel: +998933448517
488
“DEVELOPMENT ISSUES OF INNOVATIVE ECONOMY IN THE
AGRICULTURAL SECTOR”
International scientific-practical conference on March 25-26, 2021.
Web:
http://conference.sbtsue.uz/uz
Fizik jarayon bo‘yicha bo‘laklash qo‘llanilishi mumkin bo‘lgan 2 ta ayirmali sxema yaratishni
misol qilib
keltiramiz. Quyidagi diffuziya tenglamasini ko‘rib chiqamiz:
𝜕𝑢
𝜕𝑡
+ 𝐴
𝜕𝑢
𝜕𝑥
+ 𝐵
𝜕𝑢
𝜕𝑦
= 𝑣 (
𝜕
2
𝑢
𝜕𝑥
2
+
𝜕
2
𝑢
𝜕𝑦
2
), (1)
bu yerda
𝐴 = 𝑐𝑜𝑛𝑠𝑡, 𝐵 = 𝑐𝑜𝑛𝑠𝑡, 𝑣 = 𝑐𝑜𝑛𝑠𝑡 > 0.
Bu masalani yechish uchun tekis to‘r
Ω =
{(𝑡, 𝑥, 𝑦), 0 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝑥 ≤ 𝑙
1
, 0 ≤ 𝑦 ≤ 𝑙
2
}
kiritamiz.
𝑢
𝑛+1/2
+ 𝑢
𝑛
𝜏/2
= Λ
1
(𝑢
𝑛
, 𝑢
𝑛+1/2
) (2)
konveksiya tenglamasi
𝜕𝑢
𝜕𝑡
+ 𝐴
𝜕𝑢
𝜕𝑥
+ 𝐵
𝜕𝑢
𝜕𝑦
= 0, (2
∗
)
ni approksimatsiya qilsin.
Yuqoridagi singari
𝑢
𝑛+1
+ 𝑢
𝑛+1/2
𝜏/2
= Λ
2
(𝑢
𝑛+1/2
, 𝑢
𝑛+1
) (3)
Sxema,
𝜕𝑢
𝜕𝑡
= 𝑣 (
𝜕
2
𝑢
𝜕𝑥
2
+
𝜕
2
𝑢
𝜕𝑦
2
)
issiqlik o‘tkazuvchanlik tenglamasini approksimatsiya qiladi.
Fizik jarayon bo‘yicha (2), (3) bo‘laklash sxemasi, (1) dastlabki tenglamani approksimatsiya
qilishni ko‘rsatish qiyin emas. Bu esa birinchi mayda (oraliq) qadamida bu sxemada konvektiv ko‘chish
jarayonini inobatga oladi, ikkinchisida esa diffuziya jarayonini inobatga oladi.
(2
∗
) tenglama quyidagi shablon yordamida approksimatsiya qilinadi.
𝑢
𝑖,𝑗
𝑘+1/2
− 𝑢
𝑖,𝑗
𝑘
𝜏/2
+ 𝐴
𝑢
𝑖+1,𝑗
𝑘+1/2
− 𝑢
𝑖−1,𝑗
𝑘+1/2
2ℎ
1
+ 𝐵
𝑢
𝑖,𝑗+1
𝑘
− 𝑢
𝑖,𝑗−1
𝑘
2ℎ
2
= 0 (4)
Boshlang’ich va chegaraviy shartlar quyidagi ko’rinishda berilgan bo’lsin.
𝑢(𝑡, 0, 𝑦) = 𝑢
0
= 𝑐𝑜𝑛𝑠𝑡 (5)
𝜕𝑢
𝜕𝑥
|
𝑥=𝑙
1
= 0 (6)
𝜕𝑢
𝜕𝑦
|
𝑦=0
= 0 (7)
𝜕𝑢
𝜕𝑦
|
𝑥=𝑙
2
= 0 (8)
𝑢(0, 𝑥, 𝑦) = 0 (9)
(4) tenglamani soddalashtirsak,
𝐴
2ℎ
1
𝑢
𝑖−1,𝑗
𝑘+1/2
−
𝑢
𝑖,𝑗
𝑘+
1
2
𝜏/2
−
𝐴
2ℎ
1
𝑢
𝑖+1,𝑗
𝑘+
1
2
= − (
𝑢
𝑖,𝑗
𝑘
𝜏/2
− 𝐵
𝑢
𝑖,𝑗+1
𝑘
− 𝑢
𝑖,𝑗−1
𝑘
2ℎ
2
) ,
bundan quyidagi belgilashlarni olamiz,
𝐴
1
=
𝐴
2ℎ
1
, 𝐵
1
=
1
𝜏/2
, 𝐶
1
= −
𝐴
2ℎ
1
, (𝐹
1
)
𝑖,𝑗
𝑘
= (
𝑢
𝑖,𝑗
𝑘
𝜏/2
− 𝐵
𝑢
𝑖,𝑗+1
𝑘
−𝑢
𝑖,𝑗−1
𝑘
2ℎ
2
)
-
𝐴
1
𝑢
𝑖−1,𝑗
𝑘+1/2
− 𝐵
1
𝑢
𝑖,𝑗
𝑘+
1
2
+ 𝐶
1
𝑢
𝑖+1,𝑗
𝑘+
1
2
= −(𝐹
1
)
𝑖,𝑗
𝑘
. (10)
Bu tenglamaning umumiy ko‘rinishi hisoblanadi. Progonka usulidan foydalanib tenglamaning yechimini
quyidagi ko‘rinishda izlaymiz.
𝑢
𝑖,𝑗
𝑘+1/2
= 𝛼
𝑖+1,𝑗
𝑢
𝑖+1,𝑗
𝑘+1/2
+ 𝛽
𝑖+1,𝑗
(11)
𝛼
𝑖+1,𝑗
va
𝛽
𝑖+1,𝑗
lar hozircha nomalum koefitsentlar.
(11)
munosabatdan
489
Do'stlaringiz bilan baham: |