202-guruh(kechki) guruh



Download 200,99 Kb.
bet4/9
Sana21.02.2022
Hajmi200,99 Kb.
#461420
1   2   3   4   5   6   7   8   9
Bog'liq
XOSMAS INTEGRALLARNING TATBIQLARI

1-teorema: Agar ax<∞ cheksiz yarim oraliqda 0≤f(x)≤g(x) va xosmas integral yaqinlashuvchi bo‘lsa, unda xosmas integral ham yaqinlashuvchi va quyidagi tengsizlik o‘rinli bo‘ladi:

Isbot: Teorema sharti va aniq integral xossasiga asosan [§5, (17)], ixtiyoriy a<b<+∞ uchun

tengsizlik o‘rinli bo‘ladi. Bunda F '(b)=f(b)≥0 bo‘lgani uchun F(b) monoton kamaymovchi funksiyadir. Ikkinchi tomondan barcha ba uchun F(b)≤G<∞, ya’ni chegaralangan funksiyadir. Bulardan b→+∞ bo‘lganda F(b) chekli limitga ega bo‘lishi kelib chiqadi. Bu yerdan, 1-ta’rifga asosan,
,
ya’ni teorema tasdig‘i o‘rinli ekanligi kelib chiqadi.
Misol sifatida ushbu xosmas integralni qaraymiz:
.
Bunda integral ostidagi f(x) funksiya

shartni qanoatlantiradi va
.
Demak, 1-teoremaga asosan, berilgan I xosmas integral yaqinlashuvchi va uning qiymati I≤1/4 bo‘ladi.
2-teorema: Agar ax<∞ cheksiz yarim oraliqda 0 ≤ g(x) ≤ f(x) va
xosmas integral uzoqlashuvchi bo‘lsa, unda xosmas integral ham uzoqlashuvchi bo‘ladi.
Bu teoremaning isboti 1-teorema isboti singari amalga oshiriladi va o‘quvchiga mustaqil ish sifatida havola etiladi.
Masalan, xosmas integral uzoqlashuvchi ekanligini ko‘rsatamiz. Haqiqatan ham, x≥1 bo‘lganda, integral ostidagi funksiya

shartni qanoatlantiradi va
.
Bu yerdan, 2-tеorеmaga asosan, berilgan I integral uzoqlashuvchi ekanligi kelib chiqadi.
Agar xosmas integral ostidagi f(x) funksiya turli ishorali qiymatlarni qabul etsa, unda quyidagi teoremadan foydalanish mumkin.
3-teorema: Agar xa bo‘lganda |f(x)|≤g(x) va xosmas integral yaqinlashuvchi bo‘lsa, unda xosmas integral ham yaqinlashuvchi va
(4)
tengsizlik o‘rinli bo‘ladi.
Bu teoremani isbotsiz qabul etamiz.
Masalan, ixtiyoriy λ haqiqiy soni uchun
(5)
xosmas integral yaqinlashuvchi bo‘ladi, chunki
.
3-ta’rif: Agar

tenglikning o‘ng tomonidagi ikkala xosmas integral yaqinlashuvchi bo‘lsa, unda tenglikning chap tomonidagi xosmas integral ham yaqinlashuvchi deyiladi. Agar o‘ng tomondagi xosmas integrallardan kamida bittasi uzoqlashuvchi bo‘lsa, unda chap tomondagi xosmas integral uzoqlashuvchi deb ataladi.
Masalan,

,
ya’ni J xosmas integral yaqinlashuvchi ekan. Demak, y=1/(1+x2) , , va y=0 chiziqlar bilan chegaralangan cheksiz geometrik shakl (2-rasmga qarang) chekli va π soniga teng yuzaga ega bo‘ladi.


2-rasm




  1. Download 200,99 Kb.

    Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish