Xulosa. i) Shunday qilib, ikki o’zgaruvchili noma’lum funksiyaga nisbatan ikkinchi tartibli xususiy hosilali chiziqli (2) differensial tenglamani kanonik shaklga keltrish uchun yuqorida bayon qilingan usul odatda xarakteristikalar usuli deb atalib, u quyidagi bosqichlarda bajariladi:
1) Tenglama tipi orqali aniqlanadi;
2) (8) xarakteristik tenglamaning umumiy integrallari (11) orqali topiladi;
3) Tenglama tipiga mos ravishda o’zgaruvchilardan yangi o’zgaruvchilarga o’tiladi;
4) Yangi o’zgaruvchilarda (5) tenglama koeffisientlari (6) orqali topiladi; Bunda giperbolik holda ; parabolic holda va lliptik holda ekanligini hisobga olib nolga teng koeffisientlarni hisoblash shart emas.
5) Topilgan koeffisientlar (5) ga qo’yilib, noma’lum funksiyaning yuqori tartibli xususiy hosilasining koeffisientiga bo’lish amali bajariladi.
ii) Ko’p o’zgaruvchili hol uchun kvadratik formlar usuli. Agar qaralayotgan ikkinchi tartibli xususiy hosilali chiziqli diffrensial tenglama uch yoki undan ortiq erkli o’zgaruvchilarga bog’liq funksiyaga nisbatan tuzilgan bo’lsa, u holda bu tenglamaning tipini topish uchun unga mos kvadratik forma qaraladi:
. (13)
Agar shunday almashtirish topilib, (13) kvadratik forma
(14)
kanonik ko’rinishga ega bo’lsin. Chunki har qanday simmetrik matrissa diagonal shaklga keladi va uning diagonal elementlari 1,-1,0 lardan iborat bo’ladi.
Agar (14) formada bo’lib, barcha qo’shiluvchilar bir xil ishorali bo’lsa, u holda bu bu sohada tenglama elliptic tipli deyiladi.
Agar (14) formada bo’lib, qo’shiluvchilar orasida turli ishorali hadlar mavjud bo’lsa, u holda bu sohada tenglama giperbolik tipli deyiladi.
Agar (14) formada bo’lsa, u holda bu sohada tenglama parabolik tipli deyiladi.
Ba’zan (14) ning asos matrisasi tuziladi:
.
Qaralayotgan tenglamada izlanayotgan yechimni ikki marta uzluksiz differensiallanuvchi funksiyalar sinfidan deb qaraganimiz uchun takroroi xususiy hosilalar ikaalasi ham bir vaqtda mavjud va bir-biriga tengligi bizga matematik analiz kursidan ma’lum. Shuning uchun ham biz tenglamadgi koeffisientlar uchun deb qaraymiz. Shu sababli yuqorida kiritilgan matrissa o’z-o’ziga qo’shma (transponirlangan matrissasi o’ziga teng) bo’lgan kvadratik matrissadan iborat bo’ladi. Bunday matrisalarni albatta diagonal shaklga keltirish mumkin. Keltirilgan shakldagi barcha elementlar noldan farqli va bir xil ishorali 1 yoki -1 dan iborat bo’lsa tenglama bu nuqtada elliptic tipli, agar qaralayotgan nuqtada diagonal matrissaning elementlari har xil ishorali 1 va -1 lardan iborat bo’lsa bu nuqtada tenglama giperbolik tipli va nihoyat dioganalda 0 ham qatnashsa bu nuqtada tenglama parabolic tipga ega bo’ladi.
Do'stlaringiz bilan baham: |