2. Ikkinchi tur (koordinatalar bo‘yicha) egri chiziqli integral tushunchasi



Download 4,45 Mb.
Sana28.06.2022
Hajmi4,45 Mb.
#715697

2. Ikkinchi tur (koordinatalar bo‘yicha) egri chiziqli integral tushunchasi. To‘g‘rilanuvchi AB yoy va unda aniqlangan  funksiya berilgan bo‘lsin. AB yoyni  nuqtalar yordamida ixtiyoriy ravishda n ta bo‘lakka ajratamiz (4-rasm).
4-rasm
Bo‘lishni A nuqtadan B nuqtaga qarab olib boramiz va  deb olamiz.  nuqtaning koordinatalarini  orqali belgilab, har bir yoydan ixtiyoriy ravishda bittadan  nuqtalar tanlab olib, quyidagi yig‘indini tuzamiz:
. (4)
Bu yig‘indi  funksiya uchun AB yoyda x koordinatasi bo‘yicha tuzilgan integral yig‘indi deyiladi. Bu yig‘indining qiymati AB yoyni bo‘lish usuliga va bo‘lakchalardan  nuqtalarni tanlab olinishiga bog‘liq.  bo‘lakchalarning uzunliklarini eng kattasini  deb olib, uni nolga intiltiramiz, ravshanki unda bo‘lakchalar soni n cheksiz kattalashadi.
Ta’rif. Agar  da (4) integral yig‘indi chekli limitga ega bo‘lib, u AB yoyni bo‘laklarga bo‘lish usuliga va bo‘lakchalardan  nuqtalarni tanlab olinishiga bog‘liq bo‘lmasa, u holda bu limit  funksiyaning AB yoy bo‘ylab, x koordinata bo‘yicha ikkinchi tur egri chiziqli integrali deyiladi.
Bu holda  funksiya AB yoy bo‘ylab integrallanuvchi deyiladi.
Egri chiziqli integral  kabi belgilanadi. Demak, ta’rif bo‘yicha
.
Xuddi shu kabi  funksiyadan y koordinata bo‘yicha olingan ikkinchi tur egri chiziqli integral quyidagicha ta’riflanadi:

Agar AB yoyda aniqlangan  va  funksiyalar berilgan bo‘lib,  va  intetgrallar mavjud bo‘lsa, u holda  yig‘indi to‘la ikkinchi tur egri chiziqli integral (umumiy ko‘rinishdagi ikkinchi tur egri chiziqli integral) deyiladi va quyidagicha belgilanadi:
(5)
Agar A va B nuqtalar ustma-ust tushsa, yopiq kontur hosil bo‘ladi. Yopiq kontur bo‘yicha olingan egri chiziqli integral  ko‘rinishda belgilanadi.
Birinchi bandda ko‘rilgan tekis kuch maydonining bajargan ishi A quyidagi formula bo‘yicha topiladi:
(6)
Stoks formulasi
Mazkur punktda Grin formulasining umumlashmasi bo’lgan sirt integrali bilan egri chiziqli integralni bog’lovchi formulani keltirib chiqaramiz.
Faraz qilamiz, - sirt silliq va karrali nuqtalarga ega bo’lmasin: U bo’lakli silliq kontur bilan chegaralangan bo’lsin.
sirtni o’z ichiga oluvchi biror fazoviy sohada funksiya berilgan bo’lib, u bu sohada o’zining xususiy hosilalari bilan uzluksiz bo’lsin. U holda quyidagi

formula o’rinli.
Avval chiziq bo’yicha egri chiziqli integralni chiziq bo’yicha interalga almashtiramiz:

Bu tenglikni chiziqni ushbu

parametric ifodasini, u orqali esa - chiziqnikini

kiritib, oson tekshirish mumkin. U holda ikkala integral bitta o’sha parameter bo’yicha oddiy integralga keladi:



Endi (2) ni o’ng tomonidagi integralga Grin formulasini qo’llaymiz:

Oxirgi integral ostidagi ifodadan qyuidagini olamiz:




Endi buni (3) tenglikka qo’ysak, ushbu ikki karrali integralga kelamiz:


Ushbu



bu yerda (S) sirt tomoniga mos yo’naltiruvchi kosinuslar, formula ikkinchi va birinchi tur sirt integrallarini bog’lovchi umumiy formula bo’lib, bizga ma’lumki, sirtning tanlangan tomonini xarakterlovchi, yonaltiruvchi kosinuslar, quyidagi formulalar orqali aniqlanadi


Boshqa tomondan parametrlar bo’yicha ikki karrali integralga o’tishda,
elementni ifoda bilan almashtiriladi. Nihoyat, ushbu

O’ng tomonda, funksiyalarda o’rniga ularning orqali ifodalari qo’yilgan deb faraz qilinadi.
(4’) formulaga asosan,

ikki karrali integralni sirtni tanlangan tomoni bo’yicha olingan



sirt integraliga oson almashtirish mumkin. Shu bilan (1) tenglik isbotlandi.
Xuddi shunga o’xshash, quyidagi tengliklarni olamiz:


bu yerda – ga bog’liq yangi funksiyalar bo’lib, ular funksiyaga qo’yilgan shartlarni qanoatlantiradi.
(1), va uchala tengliklarni qo’shib, quyidagi nisbatan umumiy ko’rinishdagi formulani olamiz:


Bu tenglik Stoks formulasi deyiladi.



Download 4,45 Mb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish