1. Sonli ketma-ketlik ta’rifi va umumiy tushunchalar. Chegaralangan va chegaralanmagan sonli ketma-ketliklar


Funksiya limitining asosiy xossalari



Download 467,7 Kb.
bet6/9
Sana29.03.2022
Hajmi467,7 Kb.
#516079
1   2   3   4   5   6   7   8   9
Bog'liq
1. Sonli ketma-ketlik ta’rifi va umumiy tushunchalar. Chegaralan

Funksiya limitining asosiy xossalari:
1) yig’indining limiti. Chekli sondagi funksiyalar algebraik yig’indisining limiti, qo’shiluvchi funksiyalar limitlarining algebraik yig’indisiga teng, ya'ni va funksiyalarning dagi limitlari mavjud bo’lsa,
(4)
2) chekli sondagi funksiyalar ko’paytmasining limiti funksiyalar limitlarining ko’paytmasiga teng, ya'ni
(5)
Natija: O’zgarmas ko’paytuvchini limit belgisidan tashqariga chiqarish mumkin, ya’ni,
(6)
3) Ikkita funksiya nisbatining limiti, maxrajning limiti no’ldan farqli bo’lsa, bu funksiyalar limitlarining nisbatiga teng, ya’ni bo’lsa,
(7)
bo’ladi.
7. Aniqmasliklar.
limitni hisoblashda funksiyalar ch.kich.f. lar bo’lsa, nisbatga da (0/0) ko’rinishdagi aniqmaslik deyiladi. funksiyalar ch.kat.f. lar bo’lsa, nisbatga da ko’rinishidagi aniqmaslik deyiladi. Xuddi shunga o’xshash aniqmasliklar

limitlarni hisoblashda kelib chiqadi. Bunday hollarda limitlarni hisoblashga aniqmasliklarni ochish deyiladi.
va ( ) ko’rinishdagi aniqmasliklarni ochishda quyidagi xossadan foydalaniladi: va funksiyalar nuqtaning biror atrofidagi hamma nuqtalarda o’zaro teng bo’lsa, ularning dagi limiti ham teng bo’ladi.
Masalan, va funksiyalar ning
dan boshqa hamma qiymatlari uchun teng, chunki

Yuqoridagi xossaga asosan,

bo’ladi, ya’ni

natijaga ega bo’lamiz.
Funksiyalarning limitini topishga bir necha misollar qaraymiz.
1-misol. ekanligini funksiya limitining ta’rifidan foydalanib isbotlang.
Yechish. Buni isbotlash uchun o’zgaruvchi miqdor va o’zgarmas miqdor orasidagi farq da cheksiz kichik funksiya ekanligini ko’rsatish kifoya. Demak,

o’zgaruvchi miqdor da cheksiz kichik funksiyadan iborat. Shunday qilib,
.
2-misol. ekanligini isbotlang hamda va larning qiymatlari jadvali bilan tushuntiring.
Yechish. bo’lganligi uchun cheksiz kichik miqdordir.
ni ayirmaga qo’yib,

natijaga ega bo’lamiz.
cheksiz kichik funksiya bo’lganligi uchun ham cheksiz kichik bo’ladi. Shunday qilib, isbot bo’ldi.
Endi yuqoridagi holatni argument, funksiya qiymatlari jadvali bilan ko’rsataylik. Ma’lumki intiladi.



2

2,5

2,8

2,9

2,99

2,999





2

4

5,68

6,32

6,9302

6,993002



Bu jadvaldan ko’rinadiki, argumentning 3 ga yaqinlashib boruvchi qiymatlari uchun, funksiyaning mos qiymatlari 7 ga yaqinlashib boradi, ya'ni cheksiz kichik miqdorga ayirmaning ham cheksiz kichik miqdori to’g’ri keladi. Yuqoridagi jadvalda bo’lib, holni qaradik. bo’lib, holni o’quvchiga mustaqil ko’rsatishni tavsiya qilamiz.
Ratsional funksiyaing limitini hisoblash shu funksiyaning argument ning limitik qiymatidagi, qiymatini hisoblashga keltirildi.

Download 467,7 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish