4-§. To‘la differensialli differensial tenglamalar.
Integrallovchi ko‘paytuvchi
Quyidagi differensial tenglamalarni yechin:
( x+siny) dx+(xcosy+siny) dy=0
(y+esiny) dx+(x+ecosy) dy=0
(xy+siny) dx+(0,5x+xcosy) dy=0
(x+y+y) dx+(2xy+x+e) dy=0
(2xye+lny) dx+(e+) dy=0, y(0)=1
[siny+(1-y) cosx]dx+ [(1+x) cosy-sinx]dy=0
(y+x ln y)dx+(+x+1) dy=0
(arcsinx+2xy) dx+(x+1+arctgy) dy=0
(3yx+sinx) dx+(x-cosy) dy=0
(e+3x) dx+( e+4y) dy=0, y(0)=0
( dx+( dy=0
(3xtgy-) dx+(xsecy+4y+) dy=0
(2x+) dx=dy
(3x2 +2y)dx+(2x-3)dy=0
(tgy-ycosecx) dx+(ctgx+xsecy) dy=0
() dx+(e-x-dy=0
dx+dy=0
ydx-xdy+lnxdx=0,
21. ydx-(x+y) dy=0,
22. y,
23. (
24.
25.
26.
27.
28.
29.
30.
Do'stlaringiz bilan baham: |