1-mavzu. Differensial tenglamalar faniga kirish. O’zgaruv


Darsda yechish uchun topshiriqlar



Download 1,38 Mb.
bet7/22
Sana26.09.2022
Hajmi1,38 Mb.
#850304
1   2   3   4   5   6   7   8   9   10   ...   22
Bog'liq
1-mavzu. Differensial tenglamalar faniga kirish. O’zgaruv

Darsda yechish uchun topshiriqlar.

  1. Tenglamalarni yeсhing va maxsuslikka tekshiring.



II. Tenglamalarni parameter kiritish usuli bilan yeсhing:


  1. Lagranj va Klero tenglamalarini yeсhing:



6-MAVZU:
Tartibini pasaytirish mumkin bo’lgan yuqori tartibli differensial tenglamalar.

Yuqori tartibli tenglamalarni ba’zi hollarda tartibini pasaytirish mumkin. Xozir shunday tenglamalarning bir necha tiplarini ko’rib o’tamiz.



  1. Ushbu

(1kn) (1)
(1) tenglamada y, ,…,y(k-1) tartibli Hosila lar qatnashmaydi. Bu holda y(k)=z ko’rinishda yangi z funksiya kiritamiz, unda (1) tenglama
(2)
ko’rinishga kelib, tartibi (n-k) ga teng. Biror usul bilan (2) tenglamani yechib, umumiy yechimini topamiz.

almashtirishga ko’ra

ko’rinishiga keladi. So’ngi tenglamani integrallab,

ko’rinishdagi umumiy yechimini olamiz.
MISOL:
Unda =z deb olsak,
yoki Klero tenglamasiga keladi.
Klero tenglamasining yechimi
bo’lib, undan
tenglamaga kelamiz.
Integrallab, quyidagi
y=c1x(x-c1)+c2 ( )
ko’rinishdagi umumiy yechimni topamiz.
ESLATMA: Agar (1) tenglama

ko’rinishida bo’lsa almashtirish qilamiz. Agar

ko’rinishda bo’lsa almashtirish kiritib

ko’rinishdagi tenglamaga keltiriladi.
Agar n-tartibli tenglamani ko’rinishda yozish mumkin bo’lsa, uni integrallash oson amalga oshiriladi. Bunda f(x) (a,b) intervalda uzluksiz funksiya. Bu tenglamani integrallashda tenglikdan ketma-ket foydalanib, integrallaymiz, ya’ni

shu jarayonni n-marta takrorlab umumiy yechimni hosil qilamiz.

  1. (1) tenglamada erkli o’zgaruvchi qatnashmasa, ya’ni

(3)
bo’lsa, u holda =z ko’rinishda yangi o’zgaruvchi kiritamiz va uni erkli o’zgaruvchi sifatida olamiz hamda ketma-ket Hosila hisoblamiz:



Bu hosila larni (3) tenglamaga qo’yib,

n-1 tartibli tenglamaga kelamiz. Bu tenglamaning umumiy yechimini topsak,
z=(y,c,c1,…,cn-1)
ko’rinishida ifodalanadi. Bundan esa
=(y,c,c1,…,cn-1)
tenglamaga kelamiz. So’nggi tenglamani integrallab, (3) tenglamani umumiy yechimi topiladi.
3. (1) tenglamada F funksiya y, o’zgaruvchilarga nisbatan bir jinsli bo’lsin, ya’ni bir jinsli tenglamalar mavzusida berilgan ta’rifga ko’ra ixtiyoriy t uchun

tenglik o’rinli bo’lsin.
Bunday tenglamalar uchun
almashtirish qilamiz, unda

bo’lib, (1) tenglama

bu bir jinsli ekanligini nazarda tutsak,

Bu tenglamani ym ga bo’lib yuborsak, n-1 tartibli tenglamaga kelamiz. Uni yechib,

echimga ega bo’lamiz , yoki almashtirishga ko’ra

tenglamani yechamiz, buni umumiy yechimi

ko’rinishda bo’lib, (1) tenglamaning bir jinsli bo’lgan holdagi umumiy yechimini ifodalaydi.
Faraz qilaylik tenglama
(4)
ko’rinishda bo’lib, P va Q funksiyalar mos holda k va m tartibli bir jinsli funksiyalar bo’lsin. U holda
(5)
almashtirish qilib, (4) ni x ga nisbatan yechamiz va x ni o’rniga
x= (t) parametr kiritamiz, uni (5) ga qo’yib,

ko’rinishni hosil qilamiz.
Shunday qilib,

parametrik ko’rinishdagi tenglamani hosil qilamiz. tenglikdan foydalanib ketma-ket integrallaymiz.
ESLATMA: F funksiya bir jinsli bo’lgan holda
almashtirish kiritish ham tenglama tartibini kamayti-rishiga olib keladi.
MISOL: tenglamani yeching.
Tekshiramiz: ,
bundan demak, berilgan tenglama ni nisbatan bir jinsli ekan. Endi

belgilash kiritamiz:
hosilalar bilan birga tenglamaga qo’yamiz.

yoki bo’ladi. tenglamani yechib, topamiz. Almashtirishi ko’ra umumiy yechim hosil bo’ladi.



Download 1,38 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   ...   22




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish