1-ma’ruza: Pedagogika otmda geometriyani o’qitish nazariy masalalari: Evklidga qadar geometriya. Evklidning “Negizlar” asari. Evklidning V postulati va uni isbotlashga urinishlar. Evklid va Lobachevskiy geometriyalari qiyosiy tahlili



Download 7,43 Mb.
bet7/23
Sana11.09.2021
Hajmi7,43 Mb.
#171248
1   2   3   4   5   6   7   8   9   10   ...   23
Bog'liq
2 5397883570121345512

Lobachevskiy aksiomasi. Tekislikda to’g’ri chiziq tashqarisida olingan nuqtadan bu to’g’ri chiziq bilan kesishmaydigan kamida ikkita to’g’ri chiziq o’tadi.

Shuni ta’kidlab o’tamizki, to’g’ri chiziqda yotmaydigan nuqtadan uning bilan kesishmaydigan to’g’ri chiziq o’tishligini tasdiqlovchi fakt absolyut geometriyaga taalluqlidir, bu to’g’ri chiziqning yagonaligini parallellik aksiomasi tasdiqlaydi. Lobachevckiy aksiomasi esa bunday to’g’ri chiziqning kamida ikkitaligini tasdiqlaydi.



2.1-teorema. Lobachevskiy tekisligida to’g’ri chiziqda yotmaydigan nuqtadan bu to’g’ri chiziq bilan kesishmaydigan cheksiz ko’p to’g’ri chiziq o’tadi.

I sbot. Lobachevskiy aksiomasiga asosan   nuqtadan   to’g’ri chiziq bilan (1- chizma) kesishmaydigan   va   to’g’ri chiziqlari o’tsin.   to’g’ri chiziqda shunday   nuqtani olamizki, bu nuqta va   to’g’ri chiziq   to’g’ri chiziq bilan aniqlanadigan turli yarim tekisliklarga tegishli bo’sin.   to’g’ri chiziqda ixtiyoriy   nuqtani olib,   to’g’ri chiziqni o’tkazsak, bu to’g’ri chiziq   bilan biror   nuqtada kesishadi,   nuqta   bilan   orasida yotadi.   kesmaning ixtiyoriy   nuqtasini olib,   to’g’ri chiziqni o’tkazsak, bu to’g’ri chiziq   bilan kesishmaydi. Haqiqatan ham,   bilan   to’g’ri chiziq biror nuqtada kesishadi deb faraz qilib,   uchburchak va   to’g’ri chiziqqa nisbatan Pash aksiomasini qo’llasak,   bilan   kesishadi, degan xulosaga kelamiz. Bu esa shartga zid.

Demak,   kesma nuqtalari cheksiz ko’p bo’lgani uchun   ga o’xshash cheksiz ko’p to’g’ri chiziqlar   nuqtadan o’tib,   bilan kesishmaydi.



Beshinchi postulatning barcha ekvivalentlari ham Lobachevskiy geometriyasida o’z kuchini yo’qotadi, jumladan, uchburchak ichki burchaklarining yig’indisi endi   ga teng emas.


Download 7,43 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   ...   23




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish