O`ZBEKISTON RESPULIKASI OLIY VA O`RTA MAXSUS
TA’LIM VAZIRLIGI TERMIZ DAVLAT UNIVERSETETINING
PEDAGOGIKA INISTITUTI ANIQ VA TABIIY FANLAR FAKULTETI
INFORMATIKA O’QITISH METODIKASI 301 GURUH TALABASI
TOSHMAMATOVA MAMNUNANING
DASTURLASH TILI FANIDAN
MUSTAQIL ISHI
TERMIZ 2021
Mavzu: Mantiq algebrasining aksiomalari.
Reja:
1. Mulohazalar hisobining aksiomalar sistemasi. mantiqiy aksiomalar. Maxsus aksiomalar.Mulohazalar xisobi.
2. Keltirib chiqarish qoidasi. Xulosa qoidasi. Umumlashtirish qoidasi.
Mulohazalar algebrasi va mulohazalar hisobida formulaning tavtalogiya bo’lishi yoki bo‘lmasligini aniqlashning samarali usullaridan biri chinlik jadvalidir. Ammo predikatlar mantiqida bu holat batamom o’zgaradi. Predikatlar mantiqida ixtiyoriy formulaning umumqiymatli yoki umum qiymatli emasligi haqidagi masalani yechadigan samarali usul mavjud emas. Shuning uchun ham predikat va u bilan bog‘liq kvantor tushunchalaridan foydalanadigan matematik nazariyalarda aksiomatik usullardan foydalanish zarur bo‘lib qoladi.
Berilgan aksiomalar sistemasi negizida qurilgan aksiomatik nazariya deb shu aksiomalar sistemasiga tayanib isbotlanuvchi hamma teoremalar majmuasiga aytiladi. Aksiomatik nazariya formal va formalmas nazariyalarga bo‘linadi. Mantiq jarayonini turli matematik belgilar bilan ifodalashga intilish Arastu asarlaridayoq ko‘zga tashlanadi. 16 – 17 asrlarga kelib, mexanika va matematika fani rivojlanishi bilan matematik metodni mantiqqa tadbiq etish imkoniyati kengaya bordi. Nemis faylasufi Leybnits har xil masalalarni yechishga imkon beruvchi mantiqiy matematik metod yaratishga intilib, mantiqni matematiklashtirishga asos soldi. Mantiqiy jarayonni matematik usullar yordamida ifodalash asosan 19 asrlarga kelib rivojlana boshladi. Aksiomatik mantiqiy sistema bo’lib, mulohazalar algebrasi esa uning interpretasiyasidir (talqinidir). Berilgan aksiomalar sistemasi negizida (bazasida) qurilgan aksiomatik nazariya deb shu aksiomalar sistemasiga tayanib isbotlanuvchi hamma teoremalar majmuasiga aytiladi. Aksiomatik nazariya formal va formalmas nazariyalarga bo’linadi. Formalmas aksiomatik nazariya nazariy-to’plamiy mazmun bilan to’ldirilgan bo’lib, keltirib chiqarish tushunchasi aniq berilmagan va bu nazariya asosan fikr mazmuniga tayanadi. Birinchi tartibli matematik nazariyaning tili, term va formulalari tushunchasi, mantiqiy va xos (maxsus) aksiomalar, keltirib chiqarish qoidasi, nazariyada isbotlash tushunchasi, tavtologiya xususiy hollarining isbotlanuvchanligi, deduksiya teoremasi, nazariya tilining interpretatsiyasi (talqini), berilgan interpretatsiyada formulalaming chinlik qiymatlari, interpretatsiyaning izomorfizmligi, nazariyaning modeli, qat’iyligi, zidsizlik, to‘liqlilik va yechilish muammolari, predikatlar hisobining zidsizligi, natural sonlar nazariyasi, Gyodelning to’liqsizlik haqidagi teoremasi singari masalalar yoritilgan. Mulohazalar algebrasi va mulohazalar hisobida formulaning tavtalogiya bo’lishi yoki bo‘lmasligini aniqlashning samarali usullaridan biri chinlik jadvalidir. Ammo predikatlar mantiqida bu holat batamom o‘zgaradi. Predikatlar m antiqida ixtiyoriy formulaning umumqiymatli yoki umumqiymatli emasligi haqidagi masalani yechadigan samarali usul mavjud emas. Shuning uchun ham predikat va u bilan bog‘liq kvantor tushunchalaridan foydalanadigan matematik nazariyalarda aksiom atik usullardan foydalanish zarur bo‘lib qoladi.
Mulohazalar algebrasi va mulohazalar hisobida formulaning tavtalogiya bo'lishi yoki bo’lmasligini aniqlashning samarali usullaridan biri chinlik jadvalidir. Ammo predikatlar m antiqida bu holat batamom o‘zgaradi. Predikatlar m antiqida ixtiyoriy formulaning umumqiymatli yoki umum qiymatli emasligi haqidagi masalani yechadigan samarali usul mavjud emas. Shuning uchun ham predikat va u bilan bog‘liq kvantor tushunchalaridan foydalanadigan matematik nazariyalarda aksiom atik usullardan foydalanish zarur bo‘lib qoladi. Matematik mantiqning boshlang‘ich tushunchalaridan biri mulohaza tushunchasidir. “Mulohaza” deganda biz rost yoki yolg‘onligi haqida fikr yuritishi mumkin bo‘lgan darak gapni tushunamiz. Har qanday mulohaza yo rost yoki yolg‘on bo‘ladi. Hech bir mulohaza bir vaqtning o‘zida ham rost ham yolg‘on bo‘la olmaydi. Insonlar kundalik hayotda o’zaro muloqot qilish uchun turli mulohazalardan foydalanishadi.
Mantiqiy va xos (maxsus) aksiomalar. Birinchi tartibli nazariya aksiomalari ikki sinfga; mantiqiy va xos aksiom alarga bo‘linadi.
Mantiqiy aksiomalar: A , В va С lar T nazariyaning qanday formulalari bo'lishidan qat’i nazar quyidagi formulalar T ning mantiqiy aksiomalari bo‘ladi:
1) A->(B->C)
2) (A->(B->C)->((A->B)->(A->C))
3) (B`->A`)->(B`->A)->B
4) Bu yerda A ( x ) - berilgan T nazariyaning formulasi, t esa A ( x t ) formulada erkin bo‘lgan T nazariyaning termi. Ta’kidlash kerakki, t term x t bilan mos kelishi ham mumkin, u holda aksioinaga ega bo’lamiz;
5) agar Xj predmet o ‘zgaruvchi A formulada erkin b o ‘lmasa, u holda Xos aksiomalar. Xos aksiom alami umumiy holda tavsiflash mumkin emas, chunki ular bir nazariyadan ikkinchi nazariyaga o‘tishda o ‘zgaradi, ya’ni har bir nazariyaning o ‘zigagina xos aksiomalari bo’ladi.
Birinchi tartibli nazariya xos aksiom alarga ega emas. Bu nazariya sof mantiqiy nazariyadir. Bu nazariya birinchi tartibli predikatlar hisobi deb yuritiladi. Ko’pchilik aksiomatik nazariyalarda tenglik tushunchasidan foydalaniladi. U ikki joyli predikat “x=у” sifatida kiritiladi.
Matematikada aksiomatik metod eramizdan oldin qadimgi yunon matematiklarining ishlarida paydo bo‘lgan. Ammo aksiomatik metod XIX asrda rus matematigi N.I.Lobachevskiy tomonidan noevklid geometriyasining kashf etilishi bilan o‘zining alohida yo‘nalish sifatida yangi rivojlanish pog‘onasiga o‘tdi. SHunday qilib, aksiomatik metod matematik nazariyalarni qurish va o‘rganishda kuchli apparat ekanligi XIX asr matematiklari tomonidan to‘la-to‘kis e’tirof etildi va bu apparat matematikada keng ko‘lamda qo‘llanila boshlandi.
Mulohazalar algebrasini o‘rganganimizda bu asosan rostlik jadvali orqali ko‘pgina savollarga javob olgan edik. Mantiqning ba’zi qiyinroq masalalarini bu metod bilan xal qilish mumkin bo‘lmaganligi sababli, biz endi aksiomatik metodni qo‘llaymiz va aynan rost formulalar to‘plamini deduktiv sistema yordamida aniqlaymiz. Boshqacha aytganda, biz «dastlabki» aynan rost formulalar sifatida mulohazalar xisobi aksiomalarini aniqlaymiz va shu aksiomalardan xuddi shunday formulalarni keltirib chiqarish mumkin bo‘ladigan keltirib chiqarish qoidalarini ifodalaymiz. Bunday qoidalar mantiqa xizmat qilib, keltirib chiqarish jarayonini sof mexanik xisoblashlarga aylantirgani uchun ham mulohazalar mulohazalar xisobi atamasi paydo bo‘lgan.
Endi esa formal aksiomatik nazariyani ifodalashga o‘taylik.
Agar quyidagi shartlar bajarilsa, u holda formal (aksiomatik) nazariya aniqlangan xisoblanadi:
1. Sanoqli simvollar to‘plami- nazariyaning simvollari berilgan bo‘lsa nazariyaning chekli simvollari ketma-ketligi ning ifodasi deyiladi.
2. nazariyaning formulalari deb ataluvchi ning ifodalari to‘plami berilgan bo‘lsa. (odatda, berilgan ifodaning formula bo‘lish bo‘lmasligini aniqlovchi effektiv jarayon beriladi).
3. nazariyaning aksiomalari deb ataluvchi formulalar majmuasi to‘plami ajratilgan bo‘lsa. (ko‘pgina hollarda nazariyaning berilgan formulasi aksioma bo‘lish yoki bo‘lmasligini effektiv aniqlash mumkin bo‘ladi; bu holda ni effektiv aksiomalashtirilgan yoki aksiomatik nazariya deyiladi).
4. Formulalar orasida keltirib chiqarish qoidalari deb ataluvchi chekli R1,……,Rn munosabatlar ketma-ketligi berilgan bo‘lsin. Har bir Ri uchun shunday musbat butun soni topiladiki, ta formulalardan iborat xar qanday to‘plam uchun hamda ixtiyoriy F formula uchun, berilgan ta formulalar F formula bilan Ri munosabatda bo‘ladimi, degan savol effektiv xal etilishi kerak. Agar bu savolga xa deb javob olinsa, u holda F formula berilgan ta formulalarning Ri qoidasi bo‘yicha bevosita natijasi deyiladi.
Agar F1,…….Fn formulalar ketma-ketligi berilgan bo‘lib, har qanday uchun formula yoki aksioma bo‘lsa, yoki o‘zidan oldingi qandaydir formulalarning bevosita natijasi bo‘lsa, u holda berilgan formulalar ketma-ketligi da keltirib chiqarish deyiladi.
Agar da keltirib chiqarish mavjud bo‘lib, bu keltirib chiqarishning oxirgi formulasi formula bilan ustma-ust tushsa, u holda F formula nazariyaning teoremasi deyiladi; bunday keltirib chiqarish F formulaning keltirib chiqarishi deyiladi. (Berilgan nazariyaga nisbatan).
Xatto, effektiv aksiomalashtirilgan nazariyada ham, teorema tushunchasi effektiv bo‘lishi shart emas, chunki umuman olganda berilgan formulaning da keltirib chiqarilishi mavjudligini aniqlovchi effektiv algoritm mavjud bo‘lmasligi ham mumkin.
Bunday algoritm mavjud bo‘lgan nazariyani echiluvchan nazariya, aks holda esa echilmaydigan nazariya deyiladi.
Biroz oldinga o‘tib shuni aytish mumkinki, mulohazalar xisobi uchun qurilgan formal aksiomatik nazariya echiluvchan nazariya, tor ma’nodagi predikatlar xisobi nazariyasi esa echilmaydigan nazariyadir.
F formula nazariyada formulalar to‘plami ning mantiqiy natijasi (mulohazalar xisobida mantiqiy natija) bo‘lishi uchun shunday Fi,…..Fn formulalar ketma-ketligi mavjud bo‘lishi kerakki, bunda Fn formula F dan iborat bo‘lib, ixtiyoriy uchun Fi formula yoki aksioma, yoki to‘plamning elementi, yoki birorta keltirib chiqarish qoidasi orqali o‘zidan oldingi formulalarning bevosita natijasi bo‘lishi zarur va etarlidir. Bunday formulalar ketma-ketligi formulalar to‘plamidan F ni keltirib chiqarilishi deyilib, ning elementlari esa, keltirib chiqarish gipotenuzalari deyiladi.
Do'stlaringiz bilan baham: |