To’plamlarning birlashmasi va simmetrik ayirmasi tushunchalari



Download 0.7 Mb.
bet1/2
Sana19.11.2019
Hajmi0.7 Mb.
  1   2

  1. To’plamlarning birlashmasi va simmetrik ayirmasi tushunchalari.

    To’plamlarning birlashmasi  Ta’rif: A va B to’plamlarning birlashmasi deb shunday to’plamga aytiladiki, u faqat A yoki B to’plamning elementlarini o’z ichiga oladi.  A va B to’plamlarning birlashmasi AÈB kabi belgilanadi. Agar kesishuvchi A va B to’plamlarni Eyler doiralari yordamida tasvirlasak u holda ularning birlashmasi shtrixlangan soha bilan tasvirlanadi. (2-rasm) To’plamlarning birlashmasini topishda bajariladigan operasiya ham birlashma deb ataladi. Endi A – juft natural sonlar to’plami va B – 4 ga karrali natural sonlar to’plamining birlashmasi qanday to’plam ekanini aniqlaymiz. Ilgariroq B A ekani aniqlangan edi. Shuning uchun A B to’plamga tegishli elementlar A to’plamning elementlari bo’ladi. Demak mazkur holda AÈB = A.

    Endi berilgan А va В to'plamlardan yangi to'plamlarni hosil qilish amallarni ko'rib chiqamiz.



    А va В to'plamlarning barcha elementlaridan to'zilgan С to'plamga А va В to'plamlarning birlashmasi deyiladi va А В ko'rinishda belgilanadi. Demak, С=A B. Masalan: A={a, b, c, 1, 2} va В={ b, d, 2} bo'lsa, A B = ={a, b, c, d, 1, 2} bo'ladi. Bunda А va В to'plamlarning ikkalasida ham mavjud bo'lgan elementlar birlashmada bir marta olinadi.

    А va В to'plamlarning umumiy elementlaridan to'zilgan С to'plamga А va В to'plamlarning kesishmasi deyiladi va А В ko'rinishda belgilanadi. Demak, С=A B Masalan yuqrida berilgan to'plamlar uchun А В={b, 2}.

    A to'plamdan В to'plamning ayirmasi deb А ning В ga kirmagan elementlaridan to'zilgan to'plamga aytiladi va А \ В ko'rinishda belgilanadi.

Yuqridagi olgan misolimizda А \ В = { 1, a, c } va В \ А = {d}. Bundan


A \ B  B \ A ekanligi kelib chiqadi.

To'plamlarning ayirmasi bilan birga ularning simmetrik ayirmasi deb



ataluvchi АВ= (A \ B)(B \ A) bilan aniqlanuvchi to'plam ham qaraladi.

  1. Hosila tushunchasi, bo’linma va ayirma uchun hosila formulasi.

Agar f(x) va g(x) funksiyalarning har biri hosilaga ega bo‘lsa, u holda quyidagi differensiallash qoidalari o‘rinlidir:

1. Yig‘indining hosilasi hosilalar yig‘indisiga teng: (f(x) + g(x))' = f '(x) + g'(x). (1)

2. Ayirmaning hosilasi hosilalar ayirmasiga teng: (f(x) – g(x))' = f '(x) – g'(x). (2)

3. O‘zgarmas ko‘paytuvchini hosila belgisidan tashqariga chiqarish mumkin: (cf(x))'=c∙f ' (x), c – o‘zgarmas son. (3)

4. Ko‘paytmaning hosilasi: ( f(x)g(x))'=f '(x)g(x)+f(x)g'(x). (4)






Download 0.7 Mb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
maxsus ta’lim
O’zbekiston respublikasi
zbekiston respublikasi
axborot texnologiyalari
o’rta maxsus
guruh talabasi
nomidagi toshkent
davlat pedagogika
texnologiyalari universiteti
xorazmiy nomidagi
toshkent axborot
pedagogika instituti
haqida tushuncha
rivojlantirish vazirligi
toshkent davlat
Toshkent davlat
vazirligi toshkent
tashkil etish
matematika fakulteti
ta’limi vazirligi
samarqand davlat
kommunikatsiyalarini rivojlantirish
bilan ishlash
pedagogika universiteti
vazirligi muhammad
fanining predmeti
Darsning maqsadi
o’rta ta’lim
navoiy nomidagi
haqida umumiy
Ishdan maqsad
moliya instituti
fizika matematika
nomidagi samarqand
sinflar uchun
fanlar fakulteti
Nizomiy nomidagi
maxsus ta'lim
Ўзбекистон республикаси
ta'lim vazirligi
universiteti fizika
umumiy o’rta
Referat mavzu
respublikasi axborot
таълим вазирлиги
Alisher navoiy
махсус таълим
Toshkent axborot
Buxoro davlat