Nizomiy nomidagi toshkent davlat pedagogika universiteti matematika fizika fakulteti



Download 412,72 Kb.
bet1/3
Sana06.07.2022
Hajmi412,72 Kb.
#749283
  1   2   3
Bog'liq
2 5463125815564701449


O‘ZBEKISTON RESPUBLIKASI OLIY VA O‘RTA MAXSUS
TA’LIM VAZIRLIGI
NIZOMIY NOMIDAGI TOSHKENT DAVLAT PEDAGOGIKA UNIVERSITETI
MATEMATIKA FIZIKA FAKULTETI

MATEMATIKA” KAFEDRASI





MUSTAQIL ISH
Ta’lim yo’nalishi: MATEMATIKA VA INFORMATIKA
Guruh_103
Talabaning F.I.Sh_Xaydarova Sevinch
Fan nomi : Matematik analiz



Mavzu: HAQIQIY SONNING MODULI VA UNING XOSSALARI



Fan o'qituvchisi:Rajabov .U.T

Haqiqiy sonning moduli va uning xossalari


Reja




  1. Haqiqiy sonning absolut qiymati.



  1. Yig’indining absolut qiymati.



  1. Ayirmaning absolut qiymati.



  1. Ko’paytmaning absolut qiymati.



  1. Bo’linmaning absolut qiymati.


Haqiqiy sonning moduli

elementar funksiyalar hosilalari jadvalidan ham foydalaniladi.





(x)

f(x)




(x)

f(x)

C (o`zgarmas)

0




sin x

cos x

xp

xp-1




cos x

-sin x








tg x



ax

alna




ctg x



(x)

f(x)




(x)

f(x)

ex

ex




arcsin x



log|x|






arccos x






arctg x



ln |x|






arcctg x


Misollar. Differensiallash qoidalari va hosilalar jadvalidan foydala-nib, quyidagi funksiyalar hosilalarini hisoblang:


1. . 2. .
1.
.
2.

2. Murakkab funksiya hosilasi va differensiali
y = (u) va u = g(x) funksiyalarning superpozitsiyasidan iborat y = [g(x)] murakkab funksiya berilgan bo`lsin.
Agar u = g(x) funksiya x0 nuqtada differensiallanuvchi, o`z navbati-da y = (u) funksiya u0 = g(x0) nuqtada differensiallanuvchi bo`lsa, u holda y = [g(x)] murakkab funksiya ham x0 nuqtada differensiallanuv-chi bo`ladi va yoki y(x0) = f (u0) · g(x0).
Murakkab funksiyaning erkli o`zgaruvchi bo`yicha hosilasi, shu funksiyani tashkil etgan (superpozitsiyalanuvchi) funksiya hosilalarining ko`paytmasiga teng.
Murakkab funksiya differensiali uchun dy = y(x0) · dx = f (u0) · du tengliklar o`rinli, bu yerda du = g(x0) · dx. Murakkab funksiya birinchi tartibli differensialini hisoblash uchun uning biror o`zgaruvchi bo`yicha hosilasini shu o`zgaruvchining differensialiga ko`paytirish yetarli. Bun-da differensialni hisoblash shakli o`zgarishsiz qolib, o`zgaruvchilarning tanlanilishiga yoki ularning erkli yoki erksizligiga bog`liq emas.Ushbu xossa birinchi tartibli differensial shaklining invariantlik xossasi deyiladi.
Misol.
1.  funksiyaning birinchi tartibli hosilasi va differensialini hisoblaymiz:


2. y = xsin x (x > 0) funksiya hosilasini hisoblash uchun, dastlab tenglikning ikkala tomonini logarifmlaymiz va so`ngra hosila olamiz:
(lny) = (sin x · lnx) <=> .
Natijada, .
3. Yuqori tartibli hosilalar va differensiallar
y = f(x) funksiya uchun birinchi tartibli hosila y aniqlangan bo`lsin. Funksiyaning ikkinchi tartibli y hosilasi u dan olinadigan hosila (agar uning mavjudlik sharti bajarilsa) sifatida aniqlanadi: y = (y).
Yuqoridagi mulohazani davom ettirib, funksiyaning uchinchi, to`r-tinchi va hokazo, ixtiyoriy n – tartibli hosilalarini aniqlash mumkin. Yuqori tartibli hosilalarni yozishda quyidagi belgilar qo`llaniladi:
f (n)(x), yxxx, yV, y, .
Shunday qilib, y = (y), y(4) = (y), . . . , y(n) = (y(n -1)).
Yuqori tartibli hosilalarni hisoblashda, birinchi tartibli hosilani hisoblash qoidalari kabi qoidalar qo`llaniladi. Masalan, y = sin2x funk-siya uchun y = (sin2x) = 2sin x(sinx) = 2sin x cos x = sin2x, y = (sin 2x)=  = 2cos2x, y = (2cos2x) = - 4sin2x va hokazo.
Quyida keltirilgan ba`zi funksiyalarning yuqori n – tartibli hosila-lari uchun tegishli formulalarni olish va ularni jadval holida yig`ish mumkin:


(x)

(n)(x)

xp

p(p-1)(p-2)…(p-n+1)xp-n

ex

ex

ekx

knekx

Lnx



sin kx

kn sin(kx+ )

cos kx

kn sin(kx+ )

y = (x) funksiyaning yuqori tartibli differensiallari ham ketma – ket ravishda, mos hosilalari kabi aniqlanadi:


d2y = d(dy) – ikkinchi tartibli differensial;
d3y = d(d2y) – uchinchi tartibli differensial;
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
dny = d(dn -1y) - n-tartibli differensial.
Agar y = (u) funksiya berilgan bo`lib, u erkli o`zgaruvchi yoki x ning chiziqli u = kx + b funksiyasidan iborat bo`lsa, u holda:
d2y = y(du)2, d3y = y(3)(du)3, . . . , dny = y(n)(du)n.
Agarda y = (x) funksiyada u = g(x) ≠ kx + b bo`lsa, u holda yuqori tartibli differensiallar uchun invariantlik xossasi o`rinli bo`lmaydi, chunki d2y = f (u) · (du)f (u) · d2u va hokazo.

Download 412,72 Kb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish