Navoiy davlat pedagogikainstituti



Download 370,82 Kb.
bet1/2
Sana08.07.2022
Hajmi370,82 Kb.
#757358
  1   2
Bog'liq
Xolmurodov Ramazon Ehtimol n. 3-modul


O`ZBEKISTONRESPUBLIKASI
OLIY VA O`RTA MAXSUSTA`LIMVAZIRLIGI
NAVOIY DAVLAT PEDAGOGIKAINSTITUTI
5110100–Matematikao`qitishmetodikasi
FAN:Ehtimollarnazariyasivamatematikstatistika

MUSTAQIL ISH


Mavzu: Tasodifiy miqdorning sonli xarakteristikalari
Bajardi: MO`M23А1-19 guruh
talabasi Xolmurodov Ramazon
Tekshirdi:“MO`M” kafedrasi
o’qituvchisi Sayfullayeva G. S.

NAVOIY – 2022


Mavzu: mavzu. Tasodifiy miqdorning sonli xarakteristikalari


Reja:



  1. Binomial taqsimot

  2. Puasson taqsimoti

  3. Geometrik taqsimot

  4. Tekis taqsimot

  5. Ko‘rsatkichli taqsimot

  6. Normal taqsimot

Tayanch so`z va iboralar: Matematik kutilma. Binomial taqsimot
Puasson taqsimoti. Geometrik taqsimot. Tekis taqsimot
Ko‘rsatkichli taqsimot .Normal taqsimot


X diskret t.m. taqsimot qonuni berilgan bo‘lsin: { }.




Matematik kutilma

  1. X t.m. matematik kutilmasi deb, qator yig‘indisiga aytiladi va

(2.5.1)

orqali belgilanadi.


Matematik kutilmaning ma’nosi shuki, u t.m. o‘rta qiymatini ifodalaydi. Haqiqatan ham ekanligini hisobga olsak, u holda
.

  1. Uzluksiz t.m. matematik kutilmasi deb

(2.5.2)
integralga aytiladi. (2.5.2) integral absolut yaqinlashuvchi, ya’ni bo‘lsa matematik kutilma chekli, aks holda matematik kutilma mavjud emas deyiladi.

Matematik kutilmaning xossalari:



  1. O‘zgarmas sonning matematik kutilmasi shu sonning o‘ziga teng, ya’ni

MC=C.

  1. O‘zgarmas ko‘paytuvchini matematik kutilish belgisidan tashqariga chiqarish mumkin,

M(CX)=CMX.

  1. Yig‘indining matematik kutilmasi matematik kutilmalar yig‘indisiga teng,

M(X+Y)=MX+MY.

  1. Agar XY bo‘lsa,

M(XY)=MXMY.

Isbotlar: 1. O‘zgarmas C sonni faqat 1 ta qiymatni bir ehtimollik bilan qabul qiluvchi t.m. sifatida qarash mumkin. Shuning uchun MC=CP{X=C}=C1=C.


2. CX diskret t.m. qiymatlarni ehtimolliklar bilan qabul qilsin, u holda .
3. X+Y diskret t.m. qiymatlarni ehtimolliklar bilan qabul qiladi, u holda ixtiyoriy n va m lar uchun

Bu yerda va bo‘ladi. Chunki, ,
.
4. Agar XY bo‘lsa, u holda


va


Matematik kutilmaning xossalari t.m. uzluksiz bo‘lganda ham hiddi shunga o‘xshash isbotlanadi. Masalan, .

Download 370,82 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish