Kramer usuli. Kramer usuli odatda determenantlar usuli ham deb ataladi. Bu usulning algoritmi quyidagicha. Dastlab quyidagi (n+1) ta n tartibli determinantlarning qiymatlari hisoblanadi va no’malumlar,, formulalar yordamida topiladi. Misol



Download 72,23 Kb.
Sana14.07.2022
Hajmi72,23 Kb.
#795108
Bog'liq
yolqin



Kramer usuli. Kramer usuli odatda determenantlar usuli ham deb ataladi. Bu usulning algoritmi quyidagicha. Dastlab quyidagi (n+1) ta n - tartibli

. . . 
determinantlarning qiymatlari hisoblanadi va no’malumlar


,  , . . . , 
formulalar yordamida topiladi.


Misol. Quyidagi


chiziqli algebraik tenglamalar sistemasini Kramer usuli yordamida yeching.

Yechish.









Javob: 

Chiziqli tenglamalar sistemasini teskari matritsa, Gauss va Gauss-Jordan usullari bilan yechish

1. Chiziqli tenglamalar sistemasini teskari matritsa usulida yechish. Berilgan (1) sistemani


AX=B (2)
matritsa ko’rinishida yozib olamiz.

(2) tenglamani har ikki tomonini chapdan A-1 teskari matritsaga ko’paytiramiz.
bo’lgani uchun
(3)
tenglik hosil bo’ladi.
(3) formula bilan topilgan X ustun matritsa sistemaning yechimi bo’ladi.
6.1-misol. a) misolni shu usul bilan yechamiz:

matritsa uchun teskari matritsa mavjud, chunki ≠0.

Javob: .
2. Gaussning klassik usuli - bu berilgan sistemaning umumiy yechimini topishdan iborat bo’lib, bunda sistemaning tenglamalari ustida elementar almashtirishlar bajarib berilgan sistema trapetsiyali yoki uchburchakli ko’rinishga keltiriladi. So’ng oxirgi tenglamadan boshlab noma’lumlar ketma-ket topiladi.
b)
x3=3, x2=2, x1=4 Javob: .
3. Gauss-Jordan usuli noma’lumlarni ketma-ket yo’qotish Gauss usuli va teskari matritsa qurish Jordan algoritmiga asoslangan. Gauss-Jordan usuliga sxema ko’rinishida quyidagicha yoziladi: .
-asosiy matritsani ozod hadlar hisobiga kengaytirilgan matritsa.
E - birlik matritsa. X - tenglama yechimini ifodalovchi ustun matritsa.
c)
sistemani Gauss-Jordan usuli bilan yeching.



Javob: ( 0; 2; 1/3; -3/2).
d) Berilgan sistema birgalikda, chunki
.
Sistema cheksiz ko’p yechimga ega, umumiy yechimni Gauss-Jordan usuli yordamida topamiz:



Javob: .
Download 72,23 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish