C++ Neural Networks and Fuzzy Logic: Preface



Download 1,14 Mb.
Pdf ko'rish
bet207/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   203   204   205   206   207   208   209   210   ...   443
Bog'liq
C neural networks and fuzzy logic

Recall for the Example

If we input the fit vector (0.3, 0.7, 0.4, 0.2), the output (b

1

, b



2

, b

3

) is determined as follows, using b



j

 = max(


min(a

1

, w



1j

), …, min(a



m

, w



mj

), where m is the dimension of the ‘a’ fit vector, and w



ij

 is the ith row, jth column

element of the matrix W.

     b


1

 = max(min(0.3, 0.3), min(0.7, 0.4), min(0.4, 0.4),

          min(0.2, 0.2)) =  max(0.3, 0.4, 0.4, 0.2) = 0.4

     b


2

 = max(min(0.3, 0.3), min(0.7, 0.3), min(0.4, 0.3),

          min(0.2, 0.2)) = max( 0.3, 0.3, 0.3, 0.2 ) = 0.3

     b3 = max(min(0.3, 0.3), min(0.7, 0.7), min(0.4, 0.4),

          min(0.2, 0.2)) = max (0.3, 0.7, 0.4, 0.2) = 0.7

The output vector (0.4, 0.3, 0.7) is not the same as the second fit vector used, namely (0.4, 0.3, 0.9), but it is a

subset of it, so the recall is not perfect. If you input the vector (0.4, 0.3, 0.7) in the opposite direction, using

the transpose of the matrix W, the output is (0.3, 0.7, 0.4, 0.2), showing resonance. If on the other hand you

input (0.4, 0.3, 0.9) at that end, the output vector is (0.3, 0.7, 0.4, 0.2), which in turn causes in the other

direction an output of (0.4, 0.3, 0.7) at which time there is resonance. Can we foresee these results? The

following section explains this further.

Recall

Let us use the operator o to denote max–min composition. Perfect recall occurs when the weight matrix is

obtained using the max–min composition of fit vectors U and V as follows:


Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   203   204   205   206   207   208   209   210   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish