Vektorlar sistemasining bazisi va rangi. Kanonik bazis



Download 96,5 Kb.
bet1/5
Sana05.09.2022
Hajmi96,5 Kb.
#848185
  1   2   3   4   5
Bog'liq
Vektorlar sistemasining bazisi va rangi. Kanonik bazis


Vektorlar sistemasining bazisi va rangi. Kanonik bazis

Reja:




  1. Vektorlar sistemasining bazisi va rangi. Kanonik bazis

  2. Bir jinsli chiziqli tenglamalar sistemasining fundamental yechim-lari tizimi.

  3. Chiziqli tenglamalar sistemasi umumiy yechimining vektor shakli


1. Vektorlar sistemasining bazisi va rangi


n o`lchovli m ta a1, a2, …, am vektorlardan iborat vektorlar sistemasi berilgan bo`lib, chiziqli bog`liq sistemani tashkil etsin. a(i)a(j), …, a(k) (1 ≤ i < j <…< k ≤ m) sistema esa berilgan a1, a2, …, am sistemaning qism osti sistemalaridan biri bo`lsin.
Agar: birinchidan, a(i), a(j), …, a(k) (1 ≤ i < j <…< k ≤ m) sistema chiziqli erkli; ikkinchidan, a1, a2, …, am sistemaning har bir vektori a(i), a(j), …, a(k) (1 ≤ i < j <…< k ≤ m) sistema vektorlari bo`yicha yagona usulda yoyilsa, u holda a(i), a(j), …, a(k) (1 ≤ i < j <…< k ≤ m) vektorlar sistemasiga a1, a2, …, am vektorlar sistemasining bazisi deyiladi.
a1, a2, …, am vektorlar sistemasining har qanday chiziqli erkli qism osti sistemasini sistemaning bazisigacha to`ldirish mumkin. Berilgan a1, a2, …, am sistemaning bazislaridan birini topish uchun a1x1+a2x2+…+amxm = θ vektor tenglama tuziladi va uning biror-bir ko`rinishdagi umumiy yechimi quriladi. Qurilgan umumiy yechimning bazis noma`lumlari oldidagi mos koeffitsient – vektorlardan iborat sistema uning bazisini tashkil etadi. Har qanday chiziqli bog`liq vektorlar sistemasi umumiy yechim ko`rinishlariga mos holda bir nechta bazisga ega bo`lishi mumkin. Har bir bazisdagi vektorlar soni esa tengligicha qoladi.
Berilgan a1, a2, …, am vektorlar sistemasining ixtiyoriy bazisi tarkibidagi vektorlar soniga uning rangi deyiladi.
Masala. Quyida berilgan vektorlar sistemasining bazislaridan birini quring va rangini aniqlang:
a1(1; -1; 2; 3), a2(-2; -3; 0; 1), a3(-2; -9; 4; 6), a4(-1; 2; -2; -1).
a1x1 a2x2 a3x3 a4x4 θ vektor tenglama umumiy yechimini Gauss-Jordan usulida quramiz.
 … 

x1, x2 va x4 noma`lumlar umumiy yechimning bazis noma`lumlari. Demak, mos ravishda, a1, a2 va a4 vektorlar tizimi berilgan sistemaning bazislaridan birini tashkil etadi. Tizim 3 ta vektordan tarkib topgani uchun berilgan vektorlar sistemasining rangi 3 ga teng.


Agar a1, a2, …, am vektorlar sistemasining rangi r ga teng bo`lsa, u holda sistemaning r ta vektoridan tuzilgan har qanday chiziqli erkli qism osti sistemasi uning bazisi bo`ladi.



Download 96,5 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish