Учет систематической погрешности и способы их уменьшения
Систематические погрешности, как правило, не проявляются при выполнении наблюдений и вычислений результатов измерений, но способны существенно исказить результаты! При разработке выбора СИ и МВИ, т.е. еще до начала измерений систематические погрешности более или менее полно исключаются (например, введением аддитивных или мультипликативных поправок). Поэтому при выполнении наблюдений и оценке результатов измерений имеют дело с не исключенными остатками систематических погрешностей - НСП. Для обнаружения НСП рекомендуется: провести измерение другим, максимально отличным от использованного, методом и сравнить результаты. Резко изменить условия наблюдений. Использовать другие экземпляры СИ, сменить оператора замеров, изменить время суток наблюдений, когда выключено технологическое оборудование. Далее провести контрольное измерение в лаборатории другого предприятия, в другом городе, в метрологическом учреждении, в котором имеются более точные СИ и МВИ. Далее выполнить теоретическую (расчетную) оценку НСП с привлечением имеющихся априорных знаний об ОИ, более точных или других моделях ОИ, методе и СИ. Все это касалось метода непосредственных измерений - метода непосредственной оценки сравнения с мерой.
Запишите формулировку методов согласно РМГ 29 – 99:
а) метод непосредственной оценки – метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений;
б) метод сравнения с мерой – метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой;
в) метод противопоставления - метод сравнения с мерой, в котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливаются соотношение между этими величинами;
г) дифференциальный метод – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами;
д) нулевой метод - метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля. Пример - Измерение электрического сопротивления мостом с полным его уравновешиванием;
е) метод замещения - метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины. Пример - Взвешивание с поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов (метод Борда);
Пусть Мх - измеряемая масса. L1 и L2 - длины плеч коромысла весов. Сначала измеряемую массу помещают на одну из чашек весов и уравновешивают весы, помещая на другую чашку весов некоторый груз массой Т (например, гирю). При этом Мх = Т L2/L1. Затем снимают массу Мх и на эту же чашку помещают гири такой суммарной массы М, чтобы весы вновь уравновесились. При этом М = Т L2/L1. Из сопоставления этих выражений следует, что Мх = М при любом отношении L2/L1, причем не нужно знать значение Т;
ж) метод совпадений - метод сравнения с мерой, в котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов. Например, измерение длины с помощью штангенциркуля с нониусом основано на использовании метода совпадений, наблюдают совпадение отметок на шкалах штангенциркуля и нониуса, при измерении частоты вращения стробоскопом - наблюдают совпадения положения какой-либо марки на вращающемся объекте в моменты вспышек известной частоты. Среди перечисленных методов существует метод компенсации погрешности по знаку - предусматривающий измерение с двумя наблюдениями, выполняемыми так, чтобы НСП входила в результат каждого из них с разными знаками. Пример - измеряется ЭДС с помощью потенциометра постоянного тока, имеющего паразитную термоЭДС. Проведя два наблюдения при противоположном направлении рабочего тока в потенциометре и взяв среднее значение, получим результат, свободный от этой погрешности. Еще пример - для исключения НСП из-за вариации, гистерезиса, мертвого хода верньерных механизмов, измерения проводят при подходе к определяемому отсчету слева и справа. Результат измерения вычисляют по формуле (8.1)
Х = (Хсл + Хспр) / 2 (8.1)
Кроме этого - метод рандомизации (перевод систематической погрешности в случайную) заключается в такой организации измерений, при которой фактор, вызывающий НСП, при каждом наблюдении действует по разному. Например:
а) для исключения влияния магнитного поля Земли наблюдения повторяют несколько раз, поворачивая ОИ каждый раз на некоторый угол, (обычно одинаковый) относительно силовых линий поля. За результат измерений принимают среднее арифметическое из всех наблюдений;
б) метод симметричных наблюдений применяется для устранения прогрессирующих систематических погрешностей, линейно меняющихся пропорционально времени;
в) используют следующее свойство любых двух наблюдений, симметричных относительно средней точки интервала наблюдений - среднее значение линейно прогрессирующей погрешности результатов любой пары симметричных наблюдений равно погрешности, соответствующей средней точке интервала;
г) ряд наблюдений выполняют через равные промежутки времени и вычисляют среднее арифметическое значение результатов симметрично расположенных наблюдений (симметрично относительно среднего по времени наблюдения). Как было сказано, они должны быть равны. Это дает возможность контролировать в ходе измерения, соблюдается ли условие линейности возрастания систематической погрешности.
Все приведенные методы (приемы), а также методы опосредованного сравнения с мерой должны учитываться при разработках МВИ.
После применения процедуры исключения систематических погрешностей в результат измерения вводятся поправки, или одна поправка, после чего измерения называются исправленными. После определения количества составляющих остатка систематических погрешностей делается расчет НСП. Неисключенные систематические погрешности отдельных наблюдений при измерениях включают в себя значение меры, используемой при поверке или калибровке СИ и искомой сумме составляющих систематической погрешности, следовательно, среднее значение измеряемой величины при N наблюдениях можно вычислить по формуле (8.2)
X N
X 1
0 N
i1
X изм
, (8.2)
где первый член суммы – погрешность меры; второй – систематическая погрешность;
третий – показание СИ и случайная погрешность.
Для описания случайной погрешности, необходимо вспомнить
«дифференциальную функцию распределения», математическое ожидание, дисперсию и среднеквадратическое отклонение, которые изучались в курсе теоретической метрологии.
Do'stlaringiz bilan baham: |