Ургенчского филиала Ташкентского университета информационных технологий Группа 972-20



Download 151,04 Kb.
bet1/3
Sana08.07.2022
Hajmi151,04 Kb.
#757000
TuriРешение
  1   2   3
Bog'liq
Ehtimоlning geometrik ta’rifi.


Ургенчского филиала Ташкентского университета информационных технологий



Группа 972-20

Выполнил(а): _ Искандарова Нодира


Ташкент-2022


Геометрическое определение вероятности


Если пространство элементарных событий содержит бесконечное число элементарных событий, то классическое определение вероятности неприменимо. В тех случаях, когда пространство элементарных событий может быть представлено некоторой областью на прямой, плоскости или в пространстве, то, учитывая равную возможность исходов эксперимента, можно построить геометрическое определение вероятности события. Допустим, что пространство элементарных событий можно геометрически представить на плоскости некоторой областью W, а любое событие A – подмножеством этой области W. Обозначим S(W) Меру Области W, S(A) – мера Области A. Тогда вероятность события A можно определить как отношение соответствующей меры S(A) к мере всей области W:
P(A) =  . (1.2)
В этом случае выполняются все аксиомы теории вероятности. Следует заметить, что событиями в этом примере считаются множества, для которых может быть определена их площадь.
Пример 1.9. Производится один выстрел по круглой мишени радиуса R. Предполагается, что каждая точка мишени может быть поражена с одинаковой вероятностью. Найти вероятность того, что расстояние от точки попадания до центра мишени меньше (R).
РешениеОбозначим событие A ={точка попадания лежит в заданном круге радиуса R}.Тогда вероятность этого события по формуле (1.2) будет равна
P(A) = .
появления некоторого события  в испытании и простейшей формулой  , где  – общее число всех возможных равновозможныхэлементарных исходов данного испытания, а  – кол-во элементарных исходов, благоприятствующих событию  .
Возникли затруднения с терминологией и/или пониманием? Пожалуйста, начните с основ теории вероятностей.
Едем дальше: классическое определение вероятности оказывается эффективным для решения целого спектра задач, но с другой стороны, обладает и рядом недостатков. Даже правильнее сказать, не недостатков, а ограничений. Одним из таких ограничений является тот факт, что оно неприменимо к испытаниям с бесконечным количеством исходов. Простейший пример:
На отрезок  наудачу бросается голодная точка. Какова вероятность того, что она попадёт в промежуток  ?

Поскольку на отрезке бесконечно много точек, то здесь нельзя применить формулу  (ввиду бесконечно большого значения «эн») и поэтому на помощь приходит другой подход, называемый геометрическим определением вероятности.
Всё очень похоже: вероятность наступления некоторого события  в испытании равна отношению  , где  – геометрическая мера, выражающая общее число всех возможных и равновозможных исходов данного испытания, а  – мера, выражающая количество благоприятствующих событию  исходов. На практике в качестве такой геометрической меры чаще всего выступает длина или площадь, реже – объём.
Рассмотрим событие:  – брошенная на отрезок  точка, попала в промежуток  . Очевидно, что общее число исходов выражается длиной бОльшего отрезка:  , а благоприятствующие событию  исходы – длиной вложенного отрезка:  По геометрическому определению вероятности:

Задача 1
Метровую ленту случайным образом разрезают ножницами. Найти вероятность того, что длина обрезка составит не менее 80 см.
Решение: «чего тут сложного? Вероятность равна 1/5-й». Это автоматическая ошибка, которую допускают по небрежности. Да, совершенно верно – длина обрезка составит не менее 80 см, если от ленты отрезать не более 20 сантиметров. Но здесь часто забывают, что искомый разрез можно сделать как с одного конца ленты, так и с другого:

Рассмотрим событие:  – длина обрезка составит не менее 0,8 м.
Поскольку ленту можно разрезать где угодно, то общему числу исходов соответствует её длина:  Благоприятствующие событию  участки разреза отмечены на рисунке красным цветом и их суммарная длина равна:  По геометрическому определению: 
Ответ: 0,4
Какой можно сделать вывод? Даже если задача кажется вам очень простой, НЕ СПЕШИТЕ. Импульсивность вообще штука скверная – это ошибки, ненужные покупки, испорченные кожные покровы отношения и т.д.… но не будем о грустном!
При оформлении задач следует обязательно указывать размерность (единицы, метры, квадратные единицы, квадратные метры и т.д.). Кстати, обратите внимание, что на финальном этапе вычислений геометрическая мера сокращается. Так в рассмотренном примере, сократились метры:  , в результате чего получилась привычная безразмерная вероятность.
Разминочная задача из сборника Рябушко:
Задача 2
После бури на участке между 40-м и 70-м километрами телефонной линии произошёл обрыв провода. Какова вероятность того, что он произошёл между 50-м и 55-м километрами линии?

Download 151,04 Kb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish