Уравнения Максвелла



Download 1,05 Mb.
bet13/26
Sana23.02.2022
Hajmi1,05 Mb.
#163800
1   ...   9   10   11   12   13   14   15   16   ...   26
Bog'liq
0006206c-626613e9

СГС

СИ





В этом случае оставшиеся уравнения Максвелла в однородных и изотропных средах могут быть записаны в следующем виде:

СГС

СИ







где  — оператор Д’Аламбера, который и в системе СГС, и в системе СИ имеет вид:

Таким образом, 8 уравнений Максвелла для компонент электромагнитного поля (2 векторных и 2 скалярных) при помощи потенциалов могут быть сведены к 4 уравнениям (скалярному для  и векторному для  ). Решения этих уравнений для произвольно двигающегося точечного заряда называются потенциалами Лиенара — Вихерта.
Возможно введение других калибровок. Так, для решения ряда задач удобной оказывается кулоновская калибровка:

В этом случае:

СГС

СИ







,
где  — соленоидальная часть тока ( ).
Первое уравнение описывает мгновенное (без запаздывания) действие кулоновской силы, поскольку кулоновская калибровка неинвариантна относительно преобразований Лоренца. При этом энергию кулоновского взаимодействия можно отделить от остальных взаимодействий, что облегчает квантование поля в гамильтоновом.
Векторный потенциал играет большую роль в электродинамике и в квантовой теории поля, однако для исследования процессов распространения электромагнитных волн в отсутствие токов и зарядов его введение часто не приводит к упрощению системы, а сводится к простой замене векторов электрического и магнитного поля на другой аналогичный вектор, описываемый теми же уравнениями. Так, для гармонических полей векторный потенциал будет просто пропорционален электрическому полю (скалярный потенциал при этом можно положить равным нулю).

Download 1,05 Mb.

Do'stlaringiz bilan baham:
1   ...   9   10   11   12   13   14   15   16   ...   26




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish