Тригонометрические уравнения и неравенства


Пример 35 Решить уравнение Решение



Download 3,18 Mb.
bet12/17
Sana25.02.2022
Hajmi3,18 Mb.
#269869
TuriКурсовая
1   ...   9   10   11   12   13   14   15   16   17
Bog'liq
prorobot.ru-11-0072

Пример 35 Решить уравнение



Решение. Обозначим и . Применяя неравенство Коши-Буняковского, получаем . Отсюда следует, что . C другой стороны имеет место . Следовательно, уравнение не имеет корней.
Ответ. .


Пример 36 Решить уравнение:



Решение. Перепишем уравнение в виде:

Ответ. .


Функциональные методы решения тригонометрических и комбинированных уравнений


Не всякое уравнение в результате преобразований может быть сведено к уравнению того или иного стандартного вида, для которого существует определенный метод решения. В таких случаях оказывается полезным использовать такие свойства функций и , как монотонность, ограниченность, четность, периодичность и др. Так, если одна из функций убывает, а вторая возрастает на промежутке , то при наличии у уравнения корня на этом промежутке, этот корень единственный, и тогда его, например, можно найти подбором. Если же функция ограничена сверху, причем , а функция ограничена снизу, причем , то уравнение равносильно системе уравнений




Пример 37 Решить уравнение



Решение. Преобразуем исходное уравнение к виду

и решим его как квадратное относительно . Тогда получим,

Решим первое уравнение совокупности. Учтя ограниченность функции , приходим к выводу, что уравнение может иметь корень только на отрезке . На этом промежутке функция возрастает, а функция убывает. Следовательно, если это уравнение имеет корень, то он единственный. Подбором находим .
Ответ. .
Пример 38 Решить уравнение



Решение. Пусть , и , тогда исходное уравнение можно записать в виде функционального уравнения . Поскольку функция нечетная, то . В таком случае получаем уравнение .
Так как , и монотонна на , то уравнение равносильно уравнению , т.е. , которое имеет единственный корень .
Ответ. .



Download 3,18 Mb.

Do'stlaringiz bilan baham:
1   ...   9   10   11   12   13   14   15   16   17




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish