Toshkent kimyo-texnologiya instituti yangiyer filiali



Download 333 Kb.
bet5/8
Sana23.06.2022
Hajmi333 Kb.
#695925
1   2   3   4   5   6   7   8
Bog'liq
Funksiya hosilasi

Cheksiz hosilalar. Ba’zi nuqtalarda limiti +¥ (-¥) ga teng bo‘lishi mumkin. Bunday hollarda shu nuqtalarda funksiya cheksiz hosilaga ega yoki funksiyaning hosilasi cheksizga teng deyiladi.
Ushbu funksiya uchun Dy/Dx nisbatning Dx®0 dagi limitini qaraylik. Funksiyaning 0 nuqtadagi orttirmasini hisoblaymiz: Dy=Df(0)=f(0+Dx)-f(0)=f(0+Dx)=f(Dx)= .
Funksiya orttirmasining argument orttirmasiga nisbati = va bu nisbatning Dx®0 dagi limiti +¥ ga teng.
Demak, funksiya x=0 nuqtada cheksiz hosilaga ega ekan.
Cheksiz hosila uchun ham bir tomonli cheksiz hosila tushunchasini ham qarash mumkin.
Agar y=f(x) funksiya x=x0 nuqtada +¥ (-¥) hosilaga ega bo‘lsa, u holda
= =+¥ (-¥)
munosabatning o‘rinli ekanligini isbotlash mumkin. Bu tasdiqning teskarisi ham o‘rinli ekanligi o‘z-o‘zidan ravshan.
Berilgan x0 nuqtada f’(x0-0)=-¥, f’(x0+0)=+¥, (f’(x0-0)=+¥, f’(x0+0)=-¥) bo‘lishi ham mumkin. Bunday holda f(x) funksiya x=x0 nuqtada hosilaga (xatto cheksiz hosilaga ham) ega emas deb hisoblanadi.
Misol tariqasida y= funksiyaning x=0 nuqtadagi bir tomonli hosilalarini aniqlaylik. Bu funksiyaning x=0 nuqtadagi orttirmasi Dy(0)= ga teng va = ekanligini ko‘rish qiyin emas. Shu sababli =+¥ va =-¥ bo‘ladi. Demak, y’(-0)=-¥, f’(+0)=+¥ bo‘lib, funksiya x=0 nuqtada cheksiz hosilaga ega emas.



  1. Hosilaning geometrik va fizik ma’nolari. Urinma va normal tenglamalari

Yuqorida biz, agar y=f(x) funksiya grafigining M0(x0;f(x0)) nuqtasida urinma o‘tkazish mumkin bo‘lsa, u holda urinmaning burchak koeffitsienti kurinma= ekanligini ko‘rsatgan edik. Bundan hosilaning geometrik ma’nosi kelib chiqadi:


y=f(x) funksiya grafigiga abssissasi x=x0 bo‘lgan nuqtasida o‘tkazilgan urinmaning burchak koeffitsienti hosilaning shu nuqtadagi qiymatiga teng kurinma=f’(x0).
Faraz qilaylik y=f(x) funksiya x=x0 nuqtada uzluksiz va f’(x0)=+¥ bo‘lsin. U holda funksiya grafigi abssissasi x=x0 nuqtada vyertikal urinmaga ega bo‘lib, unga nisbatan funksiya grafigi 7–rasmda ko‘rsatilgandek joylashadi.

7-rasm 8-rasm
Xuddi shu kabi f’(x0)=-¥ bo‘lganda ham x=x0 nuqtada funksiya grafigi vyertikal urinmaga ega bo‘ladi, funksiyaning grafigi urinmaga nisbatan 8–rasmda ko‘rsatilgandek joylashadi.
Agar f’(x0+0)=+¥ va f’(x0-0)=-¥ bo‘lsa, u holda funksiya grafigining x=x0 nuqta atrofida 4-rasmda tasvirlangandek bo‘ladi. Xuddi shunga o‘xshash, f’(x0+0)=-¥ va f’(x0-0)=+¥ bo‘lganda, funksiya grafigi x=x0 nuqta atrofida 3–rasmdagidek ko‘rinishda bo‘ladi. Bunday hollarda (x0,f(x0)) nuqtada urinma mavjud, ammo hosila mavjud emas.
Agar x=x0 nuqtada chekli bir tomonli hosilalar mavjud, lekin f’(x0+0)¹f’(x0-0) bo‘lsa, u holda funksiya grafigi 5–rasmdagiga o‘xshash ko‘rinishga ega bo‘ladi. (x0,f(x0)) nuqta grafikning sinish nuqtasi bo‘ladi.

Download 333 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish