Toshkent Iqtisodiyot unversiteti Tayyorladi: Erkinov Javohir



Download 5,57 Mb.
Sana23.12.2022
Hajmi5,57 Mb.
#894585
Bog'liq
file

Toshkent Iqtisodiyot unversiteti

Tayyorladi: Erkinov Javohir

MAVZU:Funksiyaning eng katta va eng kichik qiymatlari. Shartli ekstremumlari.

O’quv mashg’ulotining maqsadi:


Eng katta va eng kichik qiymatlarni izlash. Ekstremum va Shartli ekstremumlarni ajrata olish, ulardan foydalana olish ko’nikma, malakalarni shakllantrish.

Reja 1. Funksiyaning eng kichik va eng katta qiymatlari 2. Shartli ekstremumga olib keladigan masalalar 3. Shartli ekstremumlar

Topshiriq


Bir o’zgaruvchili funksiyalar uchun eng katta va eng kichik qiymatlarga oid bittadan to`g`ri muloxaza ayting.
Funksiya ekstremumlariga oid tushunchalar bo’yicha bo`sh joylarni to`ldiring.
maksimum
Funksiy ekstremumlari

Funksiyaning eng kichik eng katta qiymatlari. Z=f(x,y) funksiya yopiq D⊂R² sohada berilgsn bo’lsin. Veyershtrass teoremasiga ko’ra funksiya o’zining eng katta va eng kichuk qiymatlariga erishadi. Bu qiymatlar quyidagicha topish tavsiya etiladi. - Funksiyaning statsionar nuqtalari topiladi. - D dagi statsionar nuqtalarda funksiya qiymatlari topiladi. -D ning chegaralarida eng katta va eng kichik qiymatlar topiladi. -Topilgan qiymatlar ichidan funksiyaning D dagi eng katta va eng kichik qiymatlari aniqlanadi.

Misol. F(x,y)=x²+2xy-3y²+y funksiyaning D={(x,y)ϵR²: 0≤x≤1, 0≤y≤1, x+y≤1} sohadagi eng katta va eng kichuk qiymatlarini toping. Yechish.

Yechish: D soha rasmda shtrixlangan OAB uchburchakdan iborat. Z’x =2x+2y=0 x=-1/8 { => { z’y =2x-6y+1=0 y=1/8 (-1/8;1/8) tegishli emas D bo’lgani uchun bu statsionar nuqtani qaramaymiz. Demak, funksiya o’zining eng katta va eng kichik qiymatlarini soha chegaralarida qabul qiladi.

a) OB kesma bo’yicha y=0 , 0≤x≤1 bo’ladi. Z=x² bu funksiyaning eng kichik qiymati (0,0) nuqtada z=0, eng katta qiymati (1,0) z=1 bo’ladi. b) OA kesma bo’ylab x=0 , 0≤y≤1 bo’ladi. U holda z=y-3y² zy’=1-6y=0, y=1/6: z(0,0)=0, z(0,1/6)=1/12 va z(0,1)=-2. v ) AB kesma bo’ylab x+y=1, , 0≤x≤1, , 0≤y≤1, y=1-x va z=x²+2x(1-x)-3(1-x)²+1-x=x²+2x-2x²-3+6x-3x²+1-x=-4x²+7x-2, shu funksiyaning [0,1] kesmada eng katta, eng kichik qiymatini topamiz. z’x=-8x+7=0, x=7/8. z(0,1)=-2, z(1,0)=1, z(7/8,1/8)=17/16.

Xulosa. Z(0,0)=0, Z(1,0)=1, Z(0,1/6)=1/12, Z(0,1)=-2, Z(7/8,1/8)=17/16 sonlarni taqqoslab eng kichigi Z(0,1)=-2, eng kattasi Z(7/8,1/8)=17/16 ekanini topamiz. Bu qiymatlar berilgan funksiyaning D sohadagi eng katta va eng kichik qiymatlari bo’ladi.

Shartli ekstremumlar. Funksiyaning argumentlari qo’shimcha shartlarni qanoatlantiradigan ekstremumlariga shartli ekstremumlar deyiladi. Bu masalani qo’yilishi quyidagicha z=f(x 1 ,x2 ,……. ,xn ) (1) funksiyaning argumentlari ϕ 1(x 1 ,x2 , ……. ,x n)=0 ϕ 2(x 1 ,x2 , ……… ,xn)=0 ………...….. ϕ m(x 1 ,x2 , …….. , xn )=0 Shartlarni qanoatlantiruvchi ekstremumlarini toping.

Bu masalani yechish uchun (2) –shart tenglamalarini mos rac=vishda Lagranj ko’paytuvchilari deb ataladigan λ 1 , λ 2 ,……., λ m -larga ko’paytirib qo’shimcha L funksiya tuzib olinadi. L=f+ λ 1 ϕ 1 + λ 2 ϕ 2 + ……+ λ m ϕ (3) Bu funksiya x 1 ,x2 ,……. ,xn , λ 1 , λ 2 ,……., λ m n+m ta o’zgaruvchining funksiyasi bo’ladi. L- ning barcha argumentlari bo’yicha hususiy hosilalari topiladi va ular nolga tenglab shartli statsionar nuqtalar topiladi. Bu yerda yordamchi parametrlar (λ k ) larni tashlab yuborish mumkin.

Bu n+m ta noma’lumli n+m ta tenglamadan (3) iborat sistemani yechib shartli statsionar nuqtalarni topamiz. Bu topilgan nuqtalarni funksiya maksimumgami, minimumgami ega ekanligi qo’yilgan masalaning harakteriga qarab aniqlanadi. Yoki shu nuqta atrofida berilgan funksiyaning Δz ortirmasining ishorasini tekshirib aniqlash mumkin. Misol: yuzasi 2a ga teng bo’lgan temir listdan hajmi eng katta bo’lgan to’g’ri parallelipiped shaklidagi ochiq quti yasalgan. Uning o’lchamlarini toping.

Yechish. Qutining o’lchamlari x,y,z bo’lsin, u holda V=xyz funksiyasining xy+2xz+2yz= 2a, 0

Tayanch tushunchalar: 1. shartli ekstremumlar: Funksiyaning argumentlari qo’shimcha shartlarni qanoatlantiruvchi ekstremumlari shartli ekstremum deyiladi 2. Shartli statsionar nuqtalar: Lagranj funksiyasining xususiy hosilalarini nolga aylantiradigan nuqtalar shartli statsionar nuqtalar deyiladi.

Adabiyotlar ro’yhati


1. Azlarov. T., Mansurov. X., Matematik analiz. T.: «O`zbekiston». 2 t: 1994, 1995
2. Toshmetov O’. Matematik analiz. T., TDPU. 2005y.
3. Hikmatov A.G`., Turdiyev T. «Matematik analiz», T.1-qism.1990y.
4. Sa’dullayev A. va boshqalar. Matematik analiz kursi misol va masalalar to`plami. T., «O`zbekiston». 1-q. 1993., 2-q. 1995.
5. Vavilov V.V. i dr. Zadachi po matematike. Nachala analiza. M.Nauka.,1990.-608s.

UYGA VAZIFA


Eng katta va eng kichik qiymatlarga
OID TUSHUNCHALARNI TOIFALASH JADVALIGA JOYLANG

Bir o’zgaruvchili funksiya ucun

Ikki o’zgaruvchili funksiya ucun

1
2
3

1
2
3

Tekshirish savollari: 1.Veyershtrass teoremasini ifodalang (ko’p o’zgaruvchili funksiya uchun) 2.Shartli va shartsiz ekstremumlar farqi nimada 3. Shartli statsionar nuqtalar qanday nuqtalar

E’tiborihgiz uchun rahmat


Download 5,57 Mb.

Do'stlaringiz bilan baham:





Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish