Тической физики Метод вращений (Якоби) для нахождения собственных значений и собственных векторов матриц



Download 4,02 Mb.
bet3/9
Sana18.03.2023
Hajmi4,02 Mb.
#920215
TuriКурсовая
1   2   3   4   5   6   7   8   9
Решение. Составляем характеристическую матрицу :

Находим характеристический многочлен

Решим характеристическое уравнение

Подбором находим, что один корень уравнения равен -1. Есть теорема, которая говорит, что если число c является корнем многочлена , то многочлен делится на разность , то есть , где -- многочлен. В соответствии с этой теоремой многочлен должен делиться на . Выделим в характеристическом многочлене этот множитель :

Находим корни трехчлена . Они равны -1 и 3. Таким образом,

-- корень кратности 2 , -- простой корень. Итак, собственные числа матрицы A равны , . Найдем соответствующие им собственные векторы.
Пусть , тогда для собственного вектора получаем матричное уравнение

что соответствует системе уравнений

Решаем ее методом Гаусса. Выписываем расширенную матрицу системы

Первую строку, умноженную на числа -2 и -3 прибавляем соответственно ко второй и третьей строкам

Меняем местами вторую и третью строки

Возвращаемся к системе уравнений

Базисный минор матрицы находится в первых двух столбцах и первых двух строках, ранг равен 2. Поэтому фундаментальная система содержит только одно решение. Переменные и оставляем в левой части, а переменное переносим в правую часть

Полагаем , находим , . Итак, собственному числу соответствует собственный вектор .
Пусть , тогда для собственного вектора получаем матричное уравнение

что соответствует системе уравнений

Решаем ее методом Гаусса. Выписываем расширенную матрицу

Первую строку умножаем на числа 2 и 3 и прибавляем соответственно ко второй и третьей строкам

Вторую строку умножаем на -1 и прибавляем к третьей

Возвращаемся к системе уравнений

Базисный минор матрицы находится в первых двух столбцах и первых двух строках, ранг равен 2. Поэтому фундаментальная система содержит только одно решение. Переменные и оставляем в левой части, а переменное переносим в правую часть

Полагаем , находим , . Итак, собственному числу соответствует собственный вектор . Чтобы избавиться от дроби, умножим собственный вектор на 2, получим собственный вектор с тем же самым собственным числом. В итоге собственному числу соответствует собственный вектор .
Ответ: Собственные числа: , , соответствующие собственные векторы: , .



Download 4,02 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish