The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics



Download 5,05 Mb.
Pdf ko'rish
bet408/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   404   405   406   407   408   409   410   411   ...   868
time sequence plot,
as we have done in Figure 12.8, which shows the residuals
obtained from the log wages–productivity regression (12.5.2). The values of these residu-
als are given in Table 12.5 along with some other data. 
Alternatively, we can plot the
standardized residuals
against time, which are also
shown in Figure 12.8 and Table 12.5. The standardized residuals are simply the residuals
(
ˆ
u
t
) divided by the standard error of the regression (

ˆ
σ
2
), that is, they are (
ˆ
u
t
/
ˆ
σ
). Notice
that
ˆ
u
t
and
ˆ
σ
are measured in the units in which the regressand
Y
is measured. The values of
the standardized residuals will therefore be pure numbers (devoid of units of measurement)
and can be compared with the standardized residuals of other regressions. Moreover, the
standardized residuals, like
ˆ
u
t
, have zero mean (why?) and
approximately
unit variance.
19
guj75772_ch12.qxd 14/08/2008 10:40 AM Page 430


Chapter 12
Autocorrelation: What Happens If the Error Terms Are Correlated?
431
TABLE 12.5
Residuals: Actual, Standardized, and Lagged
Obs.
S1
SDRES
S1(
1)
Obs.
S1
SDRES
S1(
1)
1960

0.036068

1.639433
NA
1983
0.014416
0.655291
0.038719
1961

0.030780

1.399078

0.036068
1984
0.001774
0.080626
0.014416
1962

0.026724

1.214729

0.030780
1985
0.001620
0.073640
0.001774
1963

0.029160

1.325472

0.026724
1986
0.013471
0.612317
0.001620
1964

0.026246

1.193017

0.029160
1987
0.013725
0.623875
0.013471
1965

0.028348

1.288551

0.026246
1988
0.017232
0.783269
0.013725
1966

0.017504

0.795647

0.028348
1989

0.004818

0.219005
0.017232
1967

0.006419

0.291762

0.017504
1990

0.006232

0.283285

0.004818
1968
0.007094
0.322459

0.006419
1991

0.004118

0.187161

0.006232
1969
0.018409
0.836791
0.007094
1992

0.005078

0.230822

0.004118
1970
0.024713
1.123311
0.018409
1993

0.010686

0.485739

0.005078
1971
0.016289
0.740413
0.024713
1994

0.023553

1.070573

0.010686
1972
0.025305
1.150208
0.016289
1995

0.027874

1.266997

0.023553
1973
0.025829
1.174049
0.025305
1996

0.039805

1.809304

0.027874
1974
0.023744
1.079278
0.025829
1997

0.041164

1.871079

0.039805
1975
0.011131
0.505948
0.023744
1998

0.013576

0.617112

0.041164
1976
0.018359
0.834515
0.011131
1999

0.006674

0.303364

0.013576
1977
0.020416
0.927990
0.018359
2000
0.010887
0.494846

0.006674
1978
0.030781
1.399135
0.020416
2001
0.007551
0.343250
0.010887
1979
0.033023
1.501051
0.030781
2002
0.000453
0.020599
0.007551
1980
0.031604
1.436543
0.033023
2003

0.006673

0.303298
0.000453
1981
0.020801
0.945516
0.031604
2004

0.015650

0.711380

0.006673
1982
0.038719
1.759960
0.020801
2005

0.020198

0.918070

0.015650
Notes:
S1 
=
residuals from the wages–productivity regression (log form).
S1 (

1) 

residuals lagged one period.
SDRES 

standardized residuals 

residuals/standard error of estimate.
In large samples (
ˆ
u
t
/
ˆ
σ
) is approximately normally distributed with zero mean and unit vari-
ance. For our example,
ˆ
σ
=
2
.
6755.
Examining the time sequence plot given in Figure 12.8, we observe that both 
ˆ
u
t
and the
standardized 
ˆ
u
t
exhibit a pattern observed in Figure 12.1
d
, suggesting that perhaps 
u
t
are
not random.
To see this differently, we can plot 
ˆ
u
t
against 
ˆ
u
t

1
, that is, plot the residuals at time 
t
against their value at time (
t

1), a kind of empirical test of the AR(1) scheme. If the
residuals are nonrandom, we should obtain pictures similar to those shown in Figure 12.3.
This plot for our log wages–productivity regression is as shown in Figure 12.9; the under-
lying data are given in Table 12.5. As this figure reveals, most of the residuals are bunched
in the second (northeast) and the fourth (southwest) quadrants, suggesting a strong positive
correlation in the residuals.
The graphical method we have just discussed, although powerful and suggestive, is sub-
jective or qualitative in nature. But there are several quantitative tests that one can use to
supplement the purely qualitative approach. We now consider some of these tests.
II. The Runs Test
If we carefully examine Figure 12.8, we notice a peculiar feature: Initially, we have several
residuals that are negative, then there is a series of positive residuals, and then there are sev-
eral residuals that are negative. If these residuals were purely random, could we observe
guj75772_ch12.qxd 14/08/2008 10:40 AM Page 431


432
Part Two
Relaxing the Assumptions of the Classical Model
–6
–6
–4
–2
Res1(–1)
Res1
0
2
4
–4
–2
0
2
I
II
IV
III
4
FIGURE 12.9
Current residuals
versus lagged
residuals.
such a pattern? Intuitively, it seems unlikely. This intuition can be checked by the so-called
runs test,
sometimes also known as the 
Geary test,
a nonparametric test.
20
To explain the runs test, let us simply note down the signs (
or 
) of the residuals
obtained from the wages–productivity regression, which are given in the first column of
Table 12.5.
(
−−−−−−−−
)(
+++++++++++++++++++++
)(
−−−−−−−−−−−
)(
+++
)(
−−−
)
(12.6.1)
Thus there are 8 negative residuals, followed by 21 positive residuals, followed by 11 neg-
ative residuals, followed by 3 positive residuals, followed by 3 negative residuals, for a total
of 46 observations.
We now define a 

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   404   405   406   407   408   409   410   411   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish