The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics



Download 5,05 Mb.
Pdf ko'rish
bet406/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   402   403   404   405   406   407   408   409   ...   868
(12.4.6)
r
2
=
0.5419
ˆ
σ
2
=
0.8114
whereas the true regression line is as given by Eq. (12.4.4). Both the regression lines are
given in Figure 12.6, which shows clearly how much the fitted regression line distorts the
true regression line; it seriously underestimates the true slope coefficient but overestimates
the true intercept. (But note that the OLS estimators are still unbiased.)
Figure 12.6 also shows why the true variance of 
u
i
is likely to be underestimated by the
estimator 
ˆ
σ
2
, which is computed from the 
ˆ
u
i
. The 
ˆ
u
i
are generally close to the fitted line
TABLE 12.1
A Hypothetical
Example of Positively
Autocorrelated Error
Terms
t
u
t
0.7
u
t
1
t
0
0
u
0
=
5 (assumed)
1
0.464
u
1
=
0.7(5)
+
0.464 
=
3.964
2
2.026
u
2
=
0.7(3.964)
+
2.0262 
=
4.8008
3
2.455
u
3
=
0.7(4.8010) 
+
2.455 
=
5.8157
4

0.323
u
4
=
0.7(5.8157) 

0.323 
=
3.7480
5

0.068
u
5
=
0.7(3.7480) 

0.068 
=
2.5556
6
0.296
u
6
=
0.7(2.5556) 
+
0.296 
=
2.0849
7

0.288
u
7
=
0.7(2.0849) 

0.288 
=
1.1714
8
1.298
u
8
=
0.7(1.1714) 
+
1.298 
=
2.1180
9
0.241
u
9
=
0.7(2.1180)
+
0.241 
=
1.7236
10

0.957
u
10
=
0.7(1.7236)

0.957 
=
0.2495
Note:
t
data obtained from 
A Million Random Digits and One Hundred Thousand Deviates,
Rand
Corporation, Santa Monica, Calif., 1950.
guj75772_ch12.qxd 14/08/2008 10:40 AM Page 425


426
Part Two
Relaxing the Assumptions of the Classical Model
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
0
Time
u
t
FIGURE 12.5
Correlation generated
by the scheme
u
t
=
0
.
7
u
t

1
+
ε
t
(Table 12.1).
TABLE 12.2
Generation of 
Y
Sample Values
X
t
u
t
Y
t
1.0 
0.8
X
t
u
t
1
3.9640
Y
1
=
1.0 
+
0.8(1) 
+
3.9640 
=
5.7640
2
4.8010
Y
2
=
1.0 
+
0.8(2) 
+
4.8008 
=
7.4008
3
5.8157
Y
3
=
1.0 
+
0.8(3) 
+
5.8157 
=
9.2157
4
3.7480
Y
4
=
1.0 
+
0.8(4) 
+
3.7480 
=
7.9480
5
2.5556
Y
5
=
1.0 
+
0.8(5) 
+
2.5556 
=
7.5556
6
2.0849
Y
6
=
1.0 
+
0.8(6) 
+
2.0849 
=
7.8849
7
1.1714
Y
7
=
1.0 
+
0.8(7) 
+
1.1714 
=
7.7714
8
2.1180
Y
8
=
1.0 
+
0.8(8) 
+
2.1180 
=
9.5180
9
1.7236
Y
9
=
1.0 
+
0.8(9) 
+
1.7236 
=
9.9236
10
0.2495
Y
10
=
1.0 
+
0.8(10) 
+
0.2495 
=
9.2495
Note: u
t
data obtained from Table 12.1.
(which is due to the OLS procedure) but deviate substantially from the true PRF. Hence,
they do not give a correct picture of 
u
i
. To gain some insight into the extent of underesti-
mation of true
σ
2
, suppose we conduct another sampling experiment. Keeping the 
X
t
and
ε
t
given in Tables 12.1 and 12.2, let us assume 
ρ
=
0, that is, no autocorrelation. The new
sample of 
Y
values thus generated is given in Table 12.3.
guj75772_ch12.qxd 14/08/2008 10:40 AM Page 426


Chapter 12
Autocorrelation: What Happens If the Error Terms Are Correlated?
427
2
4
6
8
10
2
4
6
8
10
Y
u
1
u
1
Y
t
= 6.5452 + 0.3051
X
t
Y
t
 = 
1 + 0.8
X
t
True PRF
Actual 
Y
X
0
FIGURE 12.6
True PRF and the
estimated regression
line for the data of
Table 12.2.
TABLE 12.3
Sample of 
Y
Values
with Zero Serial
Correlation
X
t
t
u
t
Y
t
1.0 
0.8
X
t
t
1
0.464
2.264
2
2.026
4.626
3
2.455
5.855
4

0.323
3.877
5

0.068
4.932
6
0.296
6.096
7

0.288
6.312
8
1.298
8.698
9
0.241
8.441
10

0.957
8.043
Note:
Since there is no autocorrelation, the 
u
t
and 
ε
t
are identical. The 
ε
t
are
from Table 12.1.
The regression based on Table 12.3 is as follows:
ˆ
Y
t
=
2.5345
+
0.6145
X
t
(0.6796)
(0.1087)
t
=
(3.7910)
(5.6541)
(12.4.7)
r
2
=
0.7997
ˆ
σ
2
=
0.9752
This regression is much closer to the “truth’’ because the 
Y
’s are now essentially random.
Notice that 
ˆ
σ
2
has increased from 0.8114 (
ρ
=
0.7) to 0.9752 (
ρ
=
0). Also notice that the
standard errors of 
ˆ
β
1
and 
ˆ
β
2
have increased. This result is in accord with the theoretical
results considered previously.
guj75772_ch12.qxd 14/08/2008 10:40 AM Page 427


12.5
Relationship between Wages and Productivity in the Business
Sector of the United States, 1960–2005
Now that we have discussed the consequences of autocorrelation, the obvious question is,
How do we detect it and how do we correct for it? Before we turn to these topics, it is use-
ful to consider a concrete example. Table 12.4 gives data on indexes of real compensation
per hour
Y
(RCOMPB) and output per hour
X
(PRODB) in the business sector of the U.S.
economy for the period 1960–2005, the base of the indexes being 1992
=
100.
First plotting the data on 
Y
and 
X
, we obtain Figure 12.7. Since the relationship between
real compensation and labor productivity is expected to be positive, it is not surprising that
the two variables are positively related. What is surprising is that the relationship between
the two is almost linear, although there is some hint that at higher values of productivity the
relationship between the two may be slightly nonlinear. Therefore, we decided to estimate
a linear as well as a log–linear model, with the following results:
ˆ
Y
t
=
32.7419
+
0.6704
X
t
se
=
(1.3940)
(0.0157)
t
=
(23.4874)
(42.7813)
(12.5.1)
r
2
=
0.9765
d
=
0.1739
ˆ
σ
=
2.3845
428
Part Two
Relaxing the Assumptions of the Classical Model
TABLE 12.4
Indexes of Real
Compensation and
Productivity, U.S.,
1960–2005
(Index numbers,
1992 
100;
quarterly data
seasonally adjusted)
Year
Y
X
Year
Y
X
1960
60.8
48.9
1983
90.3
83.0
1961
62.5
50.6
1984
90.7
85.2
1962
64.6
52.9
1985
92.0
87.1
1963
66.1
55.0
1986
94.9
89.7
1964
67.7
56.8
1987
95.2
90.1
1965
69.1
58.8
1988
96.5
91.5
1966
71.7
61.2
1989
95.0
92.4
1967
73.5
62.5
1990
96.2
94.4
1968
76.2
64.7
1991
97.4
95.9
1969
77.3
65.0
1992
100.0
100.0
1970
78.8
66.3
1993
99.7
100.4
1971
80.2
69.0
1994
99.0
101.3
1972
82.6
71.2
1995
98.7
101.5
1973
84.3
73.4
1996
99.4
104.5
1974
83.3
72.3
1997
100.5
106.5
1975
84.1
74.8
1998
105.2
109.5
1976
86.4
77.1
1999
108.0
112.8
1977
87.6
78.5
2000
112.0
116.1
1978
89.1
79.3
2001
113.5
119.1
1979
89.3
79.3
2002
115.7
124.0
1980
89.1
79.2
2003
117.7
128.7
1981
89.3
80.8
2004
119.0
132.7
1982
90.4
80.1
2005
120.2
135.7
Notes: Y
=
index of real compensation per hour, business sector (1992 
=
100).
X
=
index of output, business sector (1992 
=
100).
Source: Economic Report of the
President, 2007, Table B-49.
guj75772_ch12.qxd 14/08/2008 10:40 AM Page 428


Chapter 12
Autocorrelation: What Happens If the Error Terms Are Correlated?
429
where 
d
is the Durbin–Watson statistic, which will be discussed shortly.
ln
Y
t
=
1.6067
+
0.6522 ln
X
t
se
=
(0.0547)
(0.0124)
t
=
(29.3680)
(52.7996)
(12.5.2)
r
2
=
0.9845
d
=
0.2176
ˆ
σ
=
0.0221
Since the above model is double-log, the slope coefficient represents elasticity. In the
present case, we see that if labor productivity goes up by 1 percent, the average compensa-
tion goes up by about 0.65 percent.
Qualitatively, both the models give similar results. In both cases the estimated coeffi-
cients are “highly” significant, as indicated by the high 

values. In the linear model, if the
index of productivity goes up by a unit, on average, the index of compensation goes up by
about 0.67 units. In the log–linear model, the slope coefficient being elasticity (why?), we
find that if the index of productivity goes up by 1 percent, on average, the index of real
compensation goes up by about 0.65 percent.
How reliable are the results given in Eqs. (12.5.1) and (12.5.2) if there is autocorrela-
tion? As stated previously, if there is autocorrelation, the estimated standard errors are
biased, as a result of which the estimated 
t
ratios are unreliable. We obviously need to find
out if our data suffer from autocorrelation. In the following section we discuss several
methods of detecting autocorrelation. We will illustrate these methods with the log–linear
model (12.5.2).

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   402   403   404   405   406   407   408   409   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish