The central limit theorem for function systems on



Download 0,69 Mb.
bet6/7
Sana19.05.2022
Hajmi0,69 Mb.
#604516
1   2   3   4   5   6   7
Bog'liq
CLT for circle homeomorphisms(magistr) sardor

Proposition 6. Let Γ = {g1,...,gk} be a familiy of homeomorphisms on S1 such that there is no measure invariant by Γ. Let p = (p1,...pk) be a probability vector. If Γ acts minimally, then there exists q ∈ (0,1) such that:

  • for every x S1 there exists an open neighbourhood I of x and Σ˜ ⊂ Σ with P(Σ)˜ > 0 such that for i = (i1,i2,...) ∈ Σ˜ we have

|gin,...,i1(I)| ≤ qn;

  • (asymptotic stability) for any x S1 the sequence (P nδx)n≥1, where P is the Markov operator corresponding to ,p), converges in the –weak topology to the unique invariant measure µ.

First, let us note that Proposition 6 implies the e-property:
Proposition 7. Under the hypothesis of Proposition 6 the operator P corresponding to ,p) satisfies the e–property. Moreover, for any open interval I S1 there exists m ∈ N such that
.
Proof From Proposition 6 it follows that P is asymptotically stable. Since suppµ= S1, in particular IntS1 suppµ=6 ∅, from Theorem 4.8 in [4] we obtain that P satisfies the e–property.
Now fix an open interval I S1. Since the operator P corresponding to (Γ,p) is asymptotically stable and it satisfies the e–property, for any x S1 there exists Nx ∈ N such that
(3) P nδx(I) > µ(I)/2 > 0
for all n Nx. On the other hand, from the e–property it follows that for every x S1 we may choose some neighbourhood Ux of x such that the above property will be satisfied if we replace x with an arbitrary y from Ux. By compactness of S1 we may find x1,...,xk S1 such that S . Then for any m ≥ max{Nx1,...,Nxk} we have

and the proof is completed. •
We are going to introduce the following notation: for ϕ : S1 → R, x S1, ω =
( i1,i2,...) ∈ Σ or) we shall denote the sum:
.
Lemma 8. Let Γ = {g1,...,gk} act minimally and there is no measure invariant by Γ. Assume that p1 = ··· = pk = 1/k and let ϕ : S1 → R be an arbitrary Lipschitz continous function with Lipschitz constant 1. Then there exist α ∈ (0,1),m ∈ N and γ > 0 such that for an arbitrary pair of points x,y S1 there exist two collections of measurable pairwise disjoint sets P1,P2 ... ⊂ Σ and such that: for every l ≥ 1
Σ = P1 ∪ P2 ∪ ··· ∪ Pl Bl, ,
where the sets Bl,Blare unions (possibly infinite) of some disjoint cylinders and a (measure preserving) bijection bl : Σ → Σ satisfying
for every j = 1,...l;

Download 0,69 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish