The central limit theorem for function systems on



Download 0,69 Mb.
bet2/7
Sana19.05.2022
Hajmi0,69 Mb.
#604516
1   2   3   4   5   6   7
Bog'liq
CLT for circle homeomorphisms(magistr) sardor

3. E-property


The e–property seems to be a very useful tool in studying ergodic properties of Markov operators and semigroups of Markov operators on Polish spaces. Following [6], we say that a Feller operator P satisfies the e–property if for any x S and a Lipschitz function f C(S) we have
,
i.e., if the family of iterates {Unf : n ∈ N} is equicontinuous.
Proposition 1. Let P be a Feller operator. If P satisfies the e–property, then
suppµ ∩ suppν = ∅
for any different ergodic invariant measures µ,ν ∈ M(S).
Proof The proof may be derived from [3] (see also [5, 6]). Indeed, in Lemma 3.4 we proved that if x ∈ suppµ, where µ ∈ M1(S) is an ergodic invariant measure, then the sequence converges in the ∗–weak topology to µ. Hence our assertion follows immediately. •
D. Worm slightly generalized the e–property introducing the Cesa´ro e–property (see [13]). Namely, a Feller operator P will satisfy the Ces´aro e–property at x S if for any Lipschitz function f C(S) we have
.
For Feller operators with the Cesa´ro e–property the following proposition holds. Its proof is the same as the proof of Proposition 2 in [5].
Proposition 2. Let (S,d) be a compact metric space and let P be a Feller operator. Assume that there exists an open subset S0 S such that P(S0) ⊂ S0 and µ(S0) = 1 for any invariant measure µ ∈ M1(S). If P satisfies the Ces´aro e–property at any point x S0, then for any ergodic invariant measure µ∈ M1(S) and every x S0 ∩ suppµthe sequence converges weakly to µ.

Download 0,69 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish