Теория систем и системный анализ



Download 5,41 Mb.
bet80/84
Sana18.07.2022
Hajmi5,41 Mb.
#822659
1   ...   76   77   78   79   80   81   82   83   84
Bog'liq
Лекции по ТСиСА 2015

Кривые роста. Графическое решение задачи прогнозирования является приближенным и носит субъективный характер. Более точ­ный прогноз можно получить с помощью аналитического выравни­вания динамических рядов - нахождения модели Р = F(t). При построении этой модели возникают те же проблемы, что и при по­строении любой другой: выбор структуры модели, оценивание ее па­раметров (коэффициентов) и оценка точности модели. Рассмотрим первую проблему. При выборе структуры модели проходится опре­делять, какие входные переменные войдут в модель и в каком виде. Здесь мы имеем только одну входную переменную - t, поэтому за­дача сужается до поиска функции одной переменной.
Функции, описывающие закономерности развития явления во времени, полученные путем аналитического выравнивания динами­ческих рядов, получили название кривые роста. Вопрос о выборе типа кривой является основным; ошибка этого этапа более значима по своим последствиям, чем ошибка в оценивании параметров.
Многолетние исследования временных рядов в экономике, социо­логии, политике, демографии и других экономико-общественных на­уках позволили выявить ряд наиболее распространенных кривых ро­ста, описывающих соответствующие явления в этих науках.
Наиболее часто применяют такие простые функции, как:
1) мно­гочлены (полиномы);
2) различного рода экспоненты;
3) логисти­ческие кривые.


Многочлены. Для выравнивания временных рядов использу­ются многочлены:





При этом коэффициент а1 можно трактовать как скорость роста, а2 - ускорение роста, а3 - изменение ускорения роста. Многочлены первой степени предполагают постоянство приращения ординат для процессов, равномерно развивающихся во времени. Парабола второй степени описывает движение с равномерным изменением прироста, т. е. равноускоренных процессов.
Обоснованием применения полиномов при выборе структуры мо­дели может быть теорема Вейерштрасса, из которой следует, что любую непрерывную функцию на заданном отрезке можно сколь угодно точно описать многочленом.


Экспоненты. Самая простая экспоненциальная (показатель­ная) кривая имеет вид Pt = abt. Если это уравнение прологариф­мировать, то в полулогарифмических координатах получим уравне­ние прямой



Более сложную зависимость можно описать логарифмической параболой





Рассмотренные выше кривые, соответствующие многочленам, не имеют асимптот, их рост ничем не ограничен. В отличие от них экспо­ненциальная кривая и логарифмическая парабола имеют асимптоты, но только в области Pt = 0. Однако есть много процессов, имеющих асимптоту, отличающуюся от нуля. Наиболее простым представите­лем семейства кривых, имеющих такую асимптоту, является кривая, получившая в статистике название модифицированной экспоненты:


Download 5,41 Mb.

Do'stlaringiz bilan baham:
1   ...   76   77   78   79   80   81   82   83   84




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish