Теорема гаусса-маркова по учебной дисциплине: эконометрика


Глава 1. Теорема Гаусса-Маркова, основные положения



Download 295,5 Kb.
bet2/7
Sana23.02.2023
Hajmi295,5 Kb.
#914107
TuriКонтрольная работа
1   2   3   4   5   6   7
Bog'liq
ТЕОРЕМА ГАУССА-МАРКОВА

Глава 1. Теорема Гаусса-Маркова, основные положения




1.1 Исторические аспекты, связанные с теоремой Гаусса-Маркова


В 1828 г. 27-летний русский математик М. В. Остроградский доложил на заседании Петербургской Академии наук о своих исследованиях в области переноса тепла, а вскоре опубликовал по этим результатам статью «Note sur la theorie de la chaleur» (Заметка по теории теплоты) в журнале Парижской Академии наук Mem. l'Acad. 1, 5/XI, p. 129, где в самом общем виде была доказана следующая формула которая является ничем иным, как иной формой записи приведенного выше выражения в векторных обозначениях.





Дальше следует вопрос: почему теорема о дивергенции часто называется все-таки теоремой Остроградского-Гаусса, т.е. почему здесь указывается и имя Гаусса, а порой, чаще всего в английской и немецкой литературе, только его имя и упоминается? Дело в том, что в 1813 г. Гаусс опубликовал фундаментальную работу «Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodo nova tractata», в которой он исследовал задачу о притяжении точки трехосным эллипсоидом. Здесь он впервые развил процедуру сведения объемного интеграла к поверхностному для простых функций в выражении и для нескольких частных случаев ограничивающих поверхностей.





Более того, в 1830 г. в работе «Allgemeine Lehrsaetze in Beziehung auf die im verkehrten Verhaeltnisse des Quadrats der Entfernung wirkenden Anziehungs- und Abstossungskraefte» («Общие теоремы относительно сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния») Гаусс доказал теорему о среднем для гравитационного потенциала, которой мы часто пользуемся в том числе в электродинамике, а именно: среднее значение потенциала по поверхности шара, внутри которого не содержится притягивающих масс, равно его значению в центре. Следом была выведена формула



где интегрирование ведется по поверхности, ограничивающей массу , а под знаком интеграла стоит производная потенциала вдоль внутренней нормали к поверхности . Таким образом, здесь Гаусс в явном виде записал интегральное соотношение, соответствующее теореме о дивергенции для частного случая кулоновских полей. Поэтому появление имени Гаусса при цитировании теоремы о дивергенции для кулоновский полей вполне закономерно. Однако следут помнить о том, что эта теорема в общем виде была доказана впервые Остроградским. Далеко не всегда (особенно в последние годы) это обстоятельство принимается в расчет, а иногда приводит и к таким несуразным высказываниям, одно из которых побудило меня написать эту заметку.


Трудно сказать, по какой причине имя Остроградского вытирается при цитировании теоремы о дивергенции. Таких причин может быть в действительности несколько. Самая банальная состоит в том, что произнести «теорема Гаусса» проще, чем «теорема Остроградского-Гаусса», особенно для нерусскоговорящего. Однако, не последнюю роль могут играть соображения приоритета со стороны того или иного научного сообщества. Как уже я упоминал выше, в Германии и в англоязычных странах упоминается в большинстве случаев только имя Гаусса, иногда имена Грина и Стокса (теорема Стокса - это также теорема о конверсии процедуры интегрирования к меньшему числу измерений, а именно преобразование поверхностного интеграла к линейному - она известна как теорема о циркуляции). С другой стороны, во французской литературе, часто называется только имя Остроградского. Традиции цитирования в нашей стране, как правило во все времена были более корректны, поэтому чаще всего теорема о дивергенции называется у нас теоремой Остроградского-Гаусса. Разумеется, каждый из нас волен соотносить эти теоремы с теми именами, которые ему наиболее симпатичны (или удобопроизносимы), но при этом не следует забывать о достойном отношении к тем людям, наследием которых мы пользуемся.



Download 295,5 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish