T u r g u n b a y e V r I s k e L d I m u s a m a t o V ic h matematik analiz



Download 7,99 Mb.
Pdf ko'rish
bet34/172
Sana03.01.2022
Hajmi7,99 Mb.
#317111
1   ...   30   31   32   33   34   35   36   37   ...   172
Bog'liq
fayl 1117 20210526

2.19-ta’rif.
  Agar 
a
  nuqtaning  ixtiyoriy  tanlangan  atrofida  ketma-ketlikning 
biror  nomeridan  boshlab  barcha  hadlari  yotsa, 
a
  soni  ketma-ketlikning  limiti 
deyiladi.
a
  soni  {x„}  ketma-ketlikning  limiti  ekanligi  simvolik  ravishda  lim 
x n
  =  
a
n-»CO
ko'rinishda yoziladi (o'gilishi:  {x„}  ketma-ketlikning 
n
 cheksizga intilgandagi limiti 
a
 gateng), buyerda///w lotincha 
limes
 so4ziningoldingi uchtaharfi boMib, o‘zbekcha 
marra

chek
 ma’nosini  bildiradi.
Yuqorida  aytilganlardan,  agar  {x„}  ketma-ketlik  limiti 
a
  ga  teng  boMsa,  u 
holda 
a
 nuqtaning 
e
 atrofidan tashqarida  {x„}  ketma-ketlikning faqat chekli  sondagi 
hadlari boMishi  mumkinligi  kelib chiqadi.
Yuqoridagi  ta’rifhi  tahlil  qilamiz.  Aytaylik  lim 
x n  =  a
  bo‘lsin.  (
a-si,a+ei
)
7 1 -*  c o
intervalni,  ya’ni 
a
  nuqtaning 
si
  atrofini  qaraylik.  Ta’rifga  ko'ra shunday 
nomer 
mavjudki,  bu  nomerdan  boshlab  ketma-ketlikning  barcha  hadlari 
a
  nuqtaning 
Ei
 
atrofida у otadi: 
( а - г 1га + г ^ ,  x ^ e  ( a - s u a +
e,), 
x
^
g
 ( а - е р Д + е , ) , ...
Agar  (
a-eza+
62
) intervalni, bu yerda 0kichiraytirsak  nima  boMadi?  Bu  holda  ham  shunday 
nomer  mavjudki,  bu 
nomerdan  boshlab  ketma-ketlikning  barcha hadlan 
a
  nuqtaning 
62
  atrofida yotadi. 
Ammo bu nomer aw algidan katta ya’ni 
П
2
>п\
 boMadi.  Har bir atrof uchun o ‘zining 
nomeri  mavjud boMadi.
Agar 
xn&  ( a - E ,a +  e)
  boMsa, u holda 
а - е < х п< а  + е О - € < х я -а < е < = > |х я - а (<8  boMadi.  Yuqorida  aytilganlami 
e ’tiborga olib 2.19-ta’rifhi  quyidagicha bayon qilish mumkin.

Download 7,99 Mb.

Do'stlaringiz bilan baham:
1   ...   30   31   32   33   34   35   36   37   ...   172




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish