Sistema parametrlari tekisligida turg‘unlik doirasini qurish. D bo‘linish prinsipi



Download 209 Kb.
bet3/4
Sana22.04.2022
Hajmi209 Kb.
#574868
1   2   3   4
Bog'liq
15.Sistema parametrlari tekisligida turg‘unlik doirasini qurish. D – bo‘linish prinsipi

a1 a3 a5 a1 a3va hokazo.
1 a1; 2 ;3 a0 a2 a1 a0 a2
0 a1 a3
Gurvits aniqlovchisining umumiy kо‗rinishi esa:
a1 a3 a5 a7 0 a0 a2 a4 a6 0
n 0 a1 a3 a5 0
0 a0 a2 a4 0
0 an
Gurvits mezoni asosida eng soda sistemalar turg‗unligining quyidagi shartlari kelib chiqadi:

  1. agar birinchi va ikkinchi tartibli sistemalarda xarakteristik tenglamaning barcha koeffitsiyentlari musbat bо‗lsa, bu sistemalar turg‗un bо‗ladi;

  2. agar uchinchi tartibli sistemada xarakteristik tenglamaning barcha koeffitsiyentlari musbat bо‗lib, a1a2>a0a3bо‗lsa, sistema turg‗un bо‗ladi;

  3. agar xarakteristik tenglamaning barcha koeffitsiyentlari musbat bо‗lib, a1a2a3 >a0a32a4a12 bо‗lsa, tо‗rtinchi tartibli sistema turg‗un hisoblanadi.

Gurvits mezonidan foydalanilganda 1 dan n gacha barcha aniqlovchilarni hisoblashning keragi yо‗q. Masalan, uchinchi tartibli sistemaning turg‗unligini aniqlash kerak bо‗lsa, uchta aniqlovchidan birini topishning о‗zi kifoY. a4 va a5 koeffitsiyentlar 3 aniqlovchida nolga teng:
a1 a3
2 a1a2 a0a3 .
a0 a2
Agar 2 aniqlovchi musbat bо‗lsa, 3 aniqlovchi ham musbat bо‗ladi. 3=a32>
0, chunki a3> 0. 1 aniqlovchi esa ma‘lum(1= a1) va musbat (chunki a1>0). Algebraik mezon beshinchi tartibdan oshmaydi va u kechikishsiz chiziqli sistemalar uchun ancha qulay.
Turg‗unlikning chastotaviy mezonlari
Yopiq sistemaning xaqiqiy koeffitsiyentli n-darajali xarakteristik tenglamasini kо‗rib chiqamiz.
D(p) a0pn a1pn1 ...an1pa0  0 (3)
Bu yerda p1, p2,…, pn -xarakteristik tenglama ildizlari.
Ildizlarning kompleks tekisligida har bir ildizga ma‘lum bir nuqta, agar ildizlar bog‗langan bо‗lsa ikki nuqta mos keladi (4-rasm).

12.3-rasm. Ildizlarning kompleks tekisligi.

Nazariy jihatdan har bir pi ildiz koordinatalar boshidan pi nuqtaga о‗tkazilgan vektor kо‗rinishida tasvirlanadi. Bu vektor uzunligi kompleks sonning moduliga pi teng. Haqiqiy о‗qning musbat yо‗nalishi va vektor orasida hosil bо‗lgan burchak kompleks sonning pi argumenti yoki fazasiga arg pi teng.
Kompleks о‗zgaruvchi tekisligida ildiz holatining о‗zgarishi argument arg о‗zgarishiga olib keladi.
Xarakteristik tenglama D(p)  0 ga p ini qо‗yib vektor argumenti о‗zgarishini olamiz D(i) – argD(i) .
Agar xarakteristik tenglamaning barcha ildizlari mavhum о‗qdan chapda joylashgan bо‗lsa, Lyapunov teoremasiga kо‗ra sistema turg‗un bо‗ladi. Chastota () о‗zgarsa D(i) vektor musbat, ya‘ni soat о‗qiga teskari yо‗nalishda buriladi. Chastota -∞ dan ∞gacha о‗zgarganda vektor о‗zgarishi
argD(i) quyidagiga teng bо‗ladi  n. Bu yerda n- D(p)  0xarakteristik
0
tenglama darajasi va u tenglama ildizlari sonini aniqlaydi. n- esa argument

Download 209 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish