3 . 7 - m i s o l . N А2 {(0,0,0),(0,0,1),(1,0,1),(1,1,1),(1,1,0),(0,1,0)} to‘plamga mos
А2 (x1 , x2 , x3 ) formulaning MKNShni 0 ga teng bo’lgan qiymatlaridan foydalanib yozamiz:
А2 (x1 , x2 , x3 ) (x1 x2 x3 )(x1 x2 x3 ) .
Algoritmning 2-va 3-qadamlarini bajaramiz:
(x1 x2 x3 )(x1 x2 x3 ) x1 x1 x1 x2 x1 x3 x1 x2 x2 x2
x2 x3 x1 x3 x2 x3 x3 x3 x1 x2 x1 x3 x1 x2 x2 x3 x1 x3 x2 x3 . Qisqartirilgan DNSh quyidagi ko‘rinishda bo‘ladi:
Ds ( f2 )x1 x2 x1 x3 x1 x2 x2 x3 x1 x3 x2 x3 .
3 . 8 - m i s o l . Quyidagi formula berilgan bo‘lsin:
А1 (x1 , x2 , x3 ) x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 .
Bu formulaga
NА1 {(0,0,0),(0,1,1),(0,1,0),(1,0,1),(1,1,0),(1,1,1)}
to‘plam mos keladi. Formulaning MKNSh ko‘rinishi
f1 (x1 , x2 , x3 ) (x1 x2 x3 )(x1 x2 x3 ) .
Algoritmning 2-va 3-qadamlarini bajaramiz:
(x1 x2 x3 )(x1 x2 x3 ) x1 x1 x1 x2 x1 x3 x1 x2
x2 x2 x2 x3 x1 x3 x2 x3 x3 x3
x1 x1 x2 x1 x3 x1 x2 x2 x2 x3 x1 x3 x2 x3
x1 x1 x3 x2 x2 x3 x1 x3 x2 x3
x1 x2 x1 x3 x2 x3 x1 x2 .
Demak, formulaning qisqartirilgan DNSh quyidagicha bo‘ladi:
Ds ( f1 ) x1 x2 .
Bajarish uchun laboratoriya topshiriqlari.
Mak-Klaski usuli bilan minimal DNSh ko’rinishiga keltiring:
14.(o’rin) Аx, y,z,u 1011011100111011;
|
x
|
y
|
z
|
u
|
Аx, y,z,u ;
|
1
|
0
|
0
|
0
|
0
|
1
|
2
|
0
|
0
|
0
|
1
|
0
|
3
|
0
|
0
|
1
|
0
|
1
|
4
|
0
|
0
|
1
|
1
|
1
|
5
|
0
|
1
|
0
|
0
|
0
|
6
|
0
|
1
|
0
|
1
|
1
|
7
|
0
|
1
|
1
|
0
|
1
|
8
|
0
|
1
|
1
|
1
|
1
|
9
|
1
|
0
|
0
|
0
|
0
|
10
|
1
|
0
|
0
|
1
|
0
|
11
|
1
|
0
|
1
|
0
|
1
|
12
|
1
|
0
|
1
|
1
|
1
|
13
|
1
|
1
|
0
|
0
|
1
|
14
|
1
|
1
|
0
|
1
|
0
|
15
|
1
|
1
|
1
|
0
|
1
|
16
|
1
|
1
|
1
|
1
|
1
|
.Qisqartirilgan DNSHga keltirish uchun quyidagi qadamlarni bajaramiz:
1.funksiyani birga teng bo’lgan qiymatini aniqlaymiz.
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
2.1- qadamdagi qiymatlarni 1lar soni ishtirokiga ko’ra o’sish tartibda saralaymiz.
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
3.Oddiy birlashtirish qoidasini qo’llaymiz va qavslarda birlashtirilgan satr nomerlarini qo’yamiz.
0
|
0
|
-
|
0
|
(1,2)
|
0
|
0
|
1
|
-
|
(2,3)
|
0
|
-
|
1
|
0
|
(2,5)
|
0
|
-
|
1
|
1
|
(3,6)
|
-
|
0
|
1
|
1
|
(3,8)
|
0
|
1
|
-
|
1
|
(4,6)
|
0
|
1
|
1
|
-
|
(5,6)
|
-
|
1
|
1
|
1
|
(6,11)
|
1
|
0
|
1
|
-
|
(7,8)
|
1
|
-
|
1
|
0
|
(7,10)
|
1
|
-
|
1
|
1
|
(8,11)
|
1
|
1
|
-
|
0
|
(9,10)
|
1
|
1
|
1
|
-
|
(10,11)
|
4.3-qadam natijalarni “-” belgi joylashuviga qarab saralaymiz.
-
|
0
|
1
|
1
|
-
|
1
|
1
|
1
|
0
|
-
|
1
|
0
|
0
|
-
|
1
|
1
|
1
|
-
|
1
|
0
|
1
|
-
|
1
|
1
|
0
|
0
|
-
|
0
|
0
|
1
|
-
|
1
|
1
|
1
|
-
|
0
|
0
|
0
|
1
|
-
|
0
|
1
|
1
|
-
|
1
|
0
|
1
|
-
|
1
|
1
|
1
|
-
|
5.4- qadam natijalarini .Oddiy birlashtirish qoidasini qo’llaymiz va qavslarda birlashtirilgan satr nomerlarini qo’yamiz.
-
|
-
|
1
|
1
|
(1,2)
|
0
|
-
|
1
|
-
|
(3,4)
|
-
|
-
|
1
|
0
|
(3,5)
|
-
|
-
|
1
|
1
|
(4,6)
|
1
|
-
|
1
|
-
|
(5,6)
|
0
|
-
|
1
|
-
|
(10,11)
|
-
|
0
|
1
|
-
|
(10,12)
|
1
|
-
|
1
|
-
|
(12,13)
|
0
|
0
|
-
|
0
|
|
0
|
1
|
-
|
1
|
|
1
|
1
|
-
|
0
|
|
6.5-qadam natijalardagi bir xil ifodalarni tashlab yuboramiz.
-
|
0
|
1
|
-
|
0
|
0
|
-
|
0
|
0
|
1
|
-
|
1
|
1
|
1
|
-
|
0
|
7.hosil bo’lgan 6-natijadagi ifodalarga e.klarni yozib dizyunksiya amali bn birlashtiramiz.
DNSH = ;
Minimal DNSh ko’rinishiga keltiring:
f x, y, z, u 0010110101110111
Foydalanilgan adabiyotlar
Kenneth H. Rosen, Discrete mathematics and its applications, 7-edition, The McGraw-Hill Companies, 2012
Гаврилов Г. П., Сапоженко А. А. Сборник задач по дискретной математике. - М.: Наука. -1969.
Яблонский С. В. Введение в дискретную математику. – М.: Наука, 1986.
Лавров И. А., Максимова Л. Л. Задачи по теории множеств, математической логике и теории алгоритмов. М.: Физ.-мат. литература, 1995.
E. Urunbayev, N. Abdullayeva, Sh. Daliyev, I.Rabbimov. Diskret matematika va matematik mantiq fanidan amaliy mashg’ulotlar. O’quv qo’llanma. SamDU nashriyoti,
2019 y., 201 b.
Э. Урунбаев. Дискретная математика (УМК), Самарканд, Университет, 2019.
Internet saytlar:
http://dimacs.rutgers.edu/
http://epubs.siam.org/sam-bin/dbq/toclist/SIDMA
http://www.vsppub.com/journals/jn-DisMatApp.html
.
Do'stlaringiz bilan baham: |