Рис.13
Решение: Обозначим искомую реакцию плоскости, направленную по нормали к этой плоскости, через , а натяжение веревки – через . Линия действия всех трех сил и пересекаются в центре шара . Примем вертикаль и горизонталь в точке за координатные оси и найдем проекции сил и на эти оси:
, , ,
, , .
Так как данная система сходящихся сил является плоской, то условия равновесия (4) имеют вид
1)
2)
Умножив первое уравнение на , а второе на и сложив их, получим
.
Затем из первого уравнения находим
.
В случае, когда веревка, удерживающая шар, параллельна наклонной плоскости , получим , .
Для решения этой же задачи графическим способом, необходимо построить замкнутый силовой многоугольник. Построение силового многоугольника всегда нужно начинать с известных, заданных сил. Из произвольной точки (рис.13б) проведем вектор , параллельный данной силе , длина которого в выбранном масштабе изображает модуль этой силы. Затем через точки и проводим прямые, параллельные линиям действия искомых сил и , которые пересекутся в точке . Векторы и определяют искомые силы и .Чтобы найти направление искомых сил на силовом треугольнике , нужно обойти этот треугольник по его периметру, причем направление этого обхода определяется направлением данной силы . Измерив длину сторон и и зная масштаб, в котором построена сила , найдем численные значения сил и .
6. Равнодействующая системы сходящихся сил. Геометрический и аналитический способы определения равнодействующей.
Равнодействующая системы сходящихся сил - сила, оказывающая на твёрдое тело такое же механическое действие, как и данная система приложенных ктелу сил. В простейших случаях (например, для сил, приложенных в одной точке или расположенных в однойплоскости) равнодействующую можно найти, последовательно применяя закон параллелограмма сил.Равнодействующую имеет не всякая система сил, например, пара сил или две силы, не лежащие в одной плоскости, равнодействующей не имеют.
Определение равнодействующей системы сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геометрическим способом. Выберем систему координат, определим проекции всех заданных векторов на эти оси (рис. 3.4а). Складываем проекции всех векторов на оси х и у (рис. 3.46).
Рис.3.4
FΣч = Flx + F2x + F3x + F4x; FΣн = Fly + F2y + F3y + F4y;
; .
Модуль (величину) равнодействующей можно найти по известным проекциям:
.
Направление вектора равнодействующей можно определить по величинам и знакам косинусов углов, образуемых равнодействующей с осями координат (рис. 3.5). Растяжение сжатие Продольные силы и определение напряжений.
-
Условия равновесия плоской системы сходящихся сил в аналитической форме. Исходя из того, что равнодействующая равна нулю, получим:
FΣ = 0.
Условия равновесия в аналитической форме можно сформулировать следующим образом:
Плоская система сходящихся сил находится в равновесии, если алгебраическая сумма проекций всех сил системы на любую ось равна нулю. Система уравнений равновесия плоской сходящейся системы сил: .
Do'stlaringiz bilan baham: |