§4. Методика изучения темы "Четырехугольники"
Четырехугольники - традиционный для курса планиметрии материал. Как и треугольник, четырехугольник трактуется в одних учебниках как простая замкнутая четырехзвенная ломаная, в других - как часть плоскости, ограниченная такой ломаной. Из всевозможных четырехугольников выделяют выпуклые. Во всех действующих в настоящее время пособиях осуществляется одинаковый подход во введении частных видов параллелограммов: прямоугольников и ромбов. Квадрат в одних учебниках вводится как четырехугольник, который одновременно является прямоугольником и ромбом. В других квадрат определяется как частный вид прямоугольника. Трапеция рассматривается после параллелограммов.
При установлении различных свойств и признаков параллелограмма широко используются свойства и признаки равных треугольников, свойств углов, образованных при пересечении двух параллельных прямых третьей, признаки параллельности прямых. Материал о параллелограммах и их частных видах очень удобен для формирования и развития логического мышления учащихся. Именно здесь учитель имеет широкие возможности по работе с определениями: предложить, например, ученику дать определение прямоугольника через понятие прямоугольника, параллелограмма и т.д.
4.1 Параллелограмм
В учебнике "Геометрия 7-11" А.В. Погорелова (18) тема "Параллелограмм" изучается в 6 параграфе "Четырехугольники" в трех пунктах.
В п.51 "Параллелограмм" в начале вводится определение параллелограмма: "Параллелограмм - это четырехугольник, у которого противолежащие стороны параллельны, т.е. лежат на параллельных прямых", а затем рассматривают и доказывают признак параллелограмма (Т.6.1).
Теорема 6.1: Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.
В п.52 "Свойство диагоналей параллелограмма" и п.53 "Свойство противолежащих сторон и углов параллелограмма" изучаются свойства параллелограмма:
1. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам. (Т.6.2, которая является обратной теореме 6.1).
2. У параллелограмма противолежащие стороны равны, противолежащие углы равны. (Т.6.3)
В учебнике "Геометрия 7-9" Л.С. Атанасяна (5) тема "Параллелограмм" рассматривается в §2 "Параллелограмм и трапеция" в пунктах 42 и 43.
Определение и свойства параллелограмма даются в п.42 "Параллелограмм":
Опр.: Параллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны. Свойства:
1. В параллелограмме противолежащие стороны и противолежащие углы равны.
2. Диагонали параллелограмма точкой пересечения делятся пополам.
Л.С. Атанасян выделяет три признака параллелограмма, которые изучаются в 43 пункте "Признаки параллелограмма":
Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм.
Если в четырехугольнике противолежащие стороны попарно равны, то этот четырехугольник - параллелограмм.
3. Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.
Рассмотрим методику изучения темы "Параллелограмм" на примере геометрии А.В. Погорелова. Понятие параллелограмма вводится с помощью таблицы "Четырехугольники".
В таблице показаны два вида четырехугольников: параллелограммы и не параллелограммы.
Параллелограмм иллюстрируется не одним объектом, входящим в объем этого понятия, что дает возможность с первого урока учащимся не приписывать этому понятию несущественные признаки: один угол острый, а другой - тупой, стороны не равны и т.д.
Классу задается вопрос: по какому признаку разделили все четырехугольники на два вида? (У четырехугольников справа противолежащие стороны параллельны.)
Составляется определение параллелограмма: параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны, т.е. лежат на параллельных прямых.
Термин "параллелограмм" происходит от объединения греческих слов "параллелос" - то, что идет рядом, и "грамма" - черта, линия (этот термин ввел Евклид).
После введения определения параллелограмма школьники решают следующие задачи:
Do'stlaringiz bilan baham: |