Reja: Sonli ketma-ketliklar


Limitlar haqidagi asosiy teoremalar



Download 0,83 Mb.
bet5/8
Sana28.05.2022
Hajmi0,83 Mb.
#613677
1   2   3   4   5   6   7   8
Bog'liq
Limitlar nazariyasi

6. Limitlar haqidagi asosiy teoremalar
1-teorema. O`zgarmas miqdorning limiti shu o`zgarmasning o`ziga teng, ya`ni: .
Isboti:
.
.
bo`lganligi uchun yoki bo`ladi.
2-teorema. Limitga ega bo`lgan funktsiyalar yig`indisi (ayirmasi) shu funktsiyalar limitlarining yig`indisi (ayirmasi)ga teng, ya`ni:

Isboti: va bo`lsin. Limitning ta`rifiga asosan va lar cheksiz kichik miqdorlardir. Bulardan va .
Demak, ,
.
Ma`lumki, - cheksiz kichik miqdordir. Bundan esa va orasidagi ayirma cheksiz kichik miqdor bo`lganligi uchun

bo`ladi. U holda, va larni hisobga olsak,

ekanligi kelib chiqadi.
3-teorema. Limitga ega bo`lgan funktsiyalar ko`paytmasining limiti shu funktsiyalar limitlarining ko`paytmasiga teng:
.
Isbot: Teorema shartida asosan va funktsiyalar limitga ega, ya`ni va . Shuning uchun ham va deb yoza olamiz. Bu tengliklarni ko`paytiramiz:
.
Bundan . Tenglikning o`ng tomoni cheksiz kichik bo`lganligi uchun ularning limiti ga tengligi shubhasizdir. U holda, ayirma cheksiz kichik miqdor bo`lib, limiti nolga teng bo`ladi. Limitning ta`rifiga asosan esa
yoki .
Demak, teorema isbot bo`ldi.
3-teoremadan quyidagi natijalar kelib chiqadi:
1- natija. O`zgarmas ko`paytuvchini limit belgisi oldiga chiqarish mumkin:
.
2- natija. Agar natural son bo`lsa, u holda
. .
3- natija. ko`phad ( butun rasional funktsiya) ning dagi limiti bu ko`phadning dagi qiymatiga teng, ya`ni: .
4- natija.

kasr- rasional funktsiyaning dagi limiti bu funktsiyaning aniqlanish sohasiga teng bo`lsa, shu funktsiyaning dagi qiymati

ga teng bo`ladi.
4-teorema. Limitga ega bo`lgan (ya`ni va ) ikki funktsiya nisbatining limiti bo`linuvchi va bo`luvchi funktsiyalar limitlarining nisbatiga teng (bunda bo`luvchi funktsiya limiti nolga teng emas):
, .
Isboti: Teorema shartiga ko`ra va bo`lganligi uchun quyidagilar o`rinli bo`ladi:
.
Hosil bo`lgan kasrning surati cheksiz kichik miqdordir. Maxraji esa cheksiz kichik miqdor emas. Bundan esa cheksiz kichik miqdorning cheksiz kichik bo`lmagan miqdorga nisbati cheksiz kichik bo`ladi. Shuning uchun ham uning limiti nolga teng. Demak, ayirmaning limiti nolga teng bo`ladi. Bundan
.
Teorema isbotlandi.

Download 0,83 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish