Reja kirish I bob funksiyaning xususiy xosilalari 1-§


Funksiyaning differensiallanuvchanligi



Download 499,07 Kb.
bet5/10
Sana20.04.2022
Hajmi499,07 Kb.
#565388
1   2   3   4   5   6   7   8   9   10
Bog'liq
tayyor kurs ishi (1)

Funksiyaning differensiallanuvchanligi
funksiya nuqtaning biror atrofda aniqlangan bo‘lsin.
2-ta’rif. Agar funksiyaning nuqtadagi to‘liq orttirmasini
(1)
ko‘rinishda ifodalash mumkin bo‘lsa, u holda funksiya nuqtada differensiallanuvchi deyiladi, bu yerda ga bog‘liq bo‘lmagan sonlar,
da
1-teorema. Agar funksiya nuqtada diffrensiallanuvchi bo‘lsa, u holda u shu nuqtada uzluksiz bo‘ladi.
2-teorema (funksiya differensiallanuvchi bo‘lishining zaruriy sharti). Agar funksiya nuqtada differensiallanuvchi bo‘lsa, u holda u shu nuqtada
va
xususiy hosilalarga ega bo‘ladi.
Shunday qilib, funksiya nuqtada differensiallanuvchi bo‘lishi uchun faqat xususiy hosilalarning mavjud bo‘lishi yetarli bo‘lmaydi. Bunda qo‘shimcha tarzda xususiy hosilalarning uzluksizligi talab qilinsa funksiya nuqtada differensiallanuvchi bo‘ladi. Boshqacha aytganda quyida isbotsiz keltiriladigan teorema o‘rinli bo‘ladi.
3-teorema (funksiya differensiallanuvchi bo‘lishining yetarli sharti). Agar funksiya nuqtaning biror atrofida uzluksiz xususiy hosilalarga ega bo‘lsa, u holda u shu nuqtada differensiallanuvchi bo‘ladi.


Funksiyaning to‘liq differensiali
funksiya nuqtada diferrensiallanuvchi bo’lsin.
3-ta’rif. to‘liq orttirmaning larga nisbatan chiziqli bo‘lgan bosh qismi ga funksiyaning nuqtadagi to‘liq differensiali deyiladi va u bilan belgilanadi.
Demak, ta’rifga ko‘ra yoki 2-teoremaga binoan

Shunday qilib, funksiyaning to‘liq differensiali xususiy hosilalarning mos argumentlar orttirmasiga ko‘paytmasining yig‘indisiga teng.
To‘liq differensialni argumentlarning orttirmalari va diferrensiallarining tengligi ni hisobga olib, quyidagicha yozish mumkin:
(2)
yoki

bu yerda funksiyaning
nuqtadagi xususiy differensiallari.
Masalan. funksiyalarning xususiy va to‘liq differensiallarini topamiz. Buning uchun avval funksiyaning xususiy hosilalarni aniqlaymiz:
.
U holda

Ko‘pchilik masalalarni yechishda funksiyaning
nuqtadagi to‘liq orttirmasi funksiyaning shu nuqtadagi to‘liq differensialiga
taqriban tenglashtiriladi, ya’ni deb olinadi.
Demak,

yoki
. (3)
(3) taqribiy tenglikka funksiyani nuqta atrofida chiziqlashtirish deyiladi. Bunda qandaydir kattalikning taqribiy qiymatini hisoblash quyidagi tartibda amalga oshiriladi:
. A ni biror funksiyaning nuqtadagi qiymatiga tenglashtiriladi, ya’ni deb olinadi;
. nuqta nuqtaga yaqin va ni hisoblash qulay qilib tanlanadi;
. hisoblanadi;
. lar topilib, lar hisoblanadi;
. qiymatlar (2.3) formulaga
qo‘yiladi.
Masalan. ni taqribiy hisoblaymiz.
. , deymiz.
U holda ,
. , ya’ni deb olamiz;
.
.
;
.



Download 499,07 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish