Reja: Chiziqli fazoning ta’rifi va misollar


-teorema. oʻlchovli chiziqli fаzoning har bir elementi bazis vektorlarining chiziqli kombinatsiyasi koʻrinishida bir qiymatli yoziladi. Isbot



Download 369,05 Kb.
bet4/8
Sana20.07.2022
Hajmi369,05 Kb.
#828648
1   2   3   4   5   6   7   8
Bog'liq
EaQ5QGPXTK0QtEuHhqD30roWBCApNAw20qy1LKnc

1-teorema. oʻlchovli chiziqli fаzoning har bir elementi bazis vektorlarining chiziqli kombinatsiyasi koʻrinishida bir qiymatli yoziladi.
Isbot. Faraz qilaylik -elementlar sistemasi fazoning bazisi va ixtiyoriy element boʻlsin. U holda elementlar sistemasi fazoda chiziqli bogʻliq boʻladi. U holda barchasi bir vaqtda nolga teng boʻlmagan sonlar ketma-ketligi mavjudki,
(1)
tenglik oʻrinli boʻladi. Bu yerda boʻladi, aks holda tenglikda sonlarning hech boʻlmaganda bittasi noldan farqli boʻlishi kerak, ammo bu elementlar sistemasining bazisligiga ziddir. Chunki
. (1)
tenglikdan quyidagiga ega boʻlamiz:
, yoki belgilashdan,
(2)
yaʻni fazoning ixtiyoriy elementi bazis elementlarining kombinatsiyasi, koʻrinishida ifodalanadi.
Endi (2) yoyilma bir qiymatli yoʻzilishini isbotlaymiz. Faraz qilaylik bu elementni boshqa koʻrinishda ham ifodalash mumkin boʻlsin:
(3)
(2) va (3) ifodalarni hadma-had ayirib quyidagini hosil qilamiz
. Bu tenglikdan va elementlar sistemasining bazisligidan yani . Demak (2) yoʻyilma yagona boʻladi.
7- ta’rif. (2) tenglik elementning bazis vektorlari boʻyicha yoyilmasi deyiladi, sonlarga esa elementning bu bazis vektorlar boʻyicha koordinatalari deyiladi
Chiziqli fazo elementlari uchun chiziqli bogʻliqlik va erklilik tushunchalariga misollar koʻramiz.
11- misol. fazoda va funksiyalar chiziqli bogʻliq boʻladimi?
Yechish. Bu vektorlarning quyidagicha chiziqli kombinatsiyasini tuzamiz va uni nolga tenglaymiz: , .
Demak, bu funksiyalar chiziqli bogʻliq.
Xuddi shunga oʻxshab koʻrsatish mumkinki fazoda , , funksiyalar ham chiziqli bogʻliq boʻladi. Chunki .

Download 369,05 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish