Модели мелкой воды в задачах речной гидродинамики
[Belikov et al.,
2019]
Belikov, V.V., Aleksyuk, A.I., Borisova, N.M., Norin, S.V.,
Rumyantsev, A.B.
, Determining the Elevations of Industrial
Sites of Nuclear Power Plants Located in Floodplains // Power
Technology and Engineering, 53(3), p. 267–277, 2019. https://doi.
org/10.1007/s10749-019-01070-4
[Belikov, Militeev,
Rodionov, 2002]
Belikov V.V., Militeev A.N., Rodionov V.B
. Two-layer model for
flood computation in complicated channel system with erosion
riverbed with floodplain // Proc. Conf. «RIVER FLOW 2002»,
Bousmar&Zech (eds.), 2002 Swets&Zeltinger, Lisse, ISBN
905809 509 6, p. 263-269.
[Belikov,
Rumyantsev,
Norin, 2018]
Belikov V.V. , Rumyantsev A.B., Norin S.V
. Investigation of
variants of optimizing the temperature regimes of nuclear power
plant cooling ponds by numerical methods // Power Technology
and Engineering, 51 (6), 2018. https://doi.org/10.1007/s10749-
018-0887-3
[Belikov,
Semenov, 1988]
Belikov V.V., Semenov A.Yu.
Godunov's type methos for a
numerical solution of the two-dimensional shallow water
equations // Proc. 17th Session of Sci. and Methodol. Seminar on
Ship Hydrodynamics. (Oct. 17–22, 1988.Bulgaria, Varna) 1988,
2, p. 56/1–56/6.
[Belikov,
Semenov, 1989]
Belikov V.V., Semenov A.Yu.
Godunov's type method for a
numerical solution of the shallow water equations // Proc. of
Soviet Union-Japan Sump. on Comput. Fluid Dynamics. Book of
abstracts. Khabarovsk, 9-16, IX, Moscov, Comput. Centre USSR
Acad. of Sciences, 1989, 3, p. 5–13
[Belikov,
Semenov, 1997]
Belikov V.V., Semenov A.Yu
. New Non-Sibson Interpolation on
Arbitrary System of Points in Euclidean Space // Proceedings of
15th World Congress on Scientific Computation Modeling and
Applied Mathematics. Berlin August 1997, V.2
[Belikov,
Semenov, 1998а]
Belikov V.V., Semenov A.Yu
. A Godunov’s Type Method Based on
an Exact Solution to the Riemann Problem for the Shallow-Water
Equations //Proc. 4 Eur. Comp. Fluid Dyn. Conf. (ECCOMAS
98). WILEY, New York,1998.V.1, Part 1, p. 310–315.
[Belikov,
Semenov, 1998б]
Belikov V.V., Semenov A.Yu
. Non-Sibsonian interpolation on
arbitrary system of points in Euclidean space and adaptive
generating isolines algorithm // Proceedings of 6th Int. Conf.
"Numerical Grid Generation in Computational Field Simulations"
July 6-9, 1998, p. 227–236.
[Belikov,
Semenov, 2000]
Belikov V., Semenov A
. Non-Sibsonian interpolation on arbitrary
system of points in Euclidean space and adaptive isolines
generation // Appl. Numer. Math., 32 (4), 2000.
[BlueKenue, 2016] BlueKenue. Canadian Hydraulics Centre. National research
council. Canada. 2016
[Bresch, 2009]
Bresch D
. Shallow-Water Equations and Related Topics // Elsevier,
2009, p. 1–104.
Список литературы
341
[Carrier,
Greenspan, 1958]
Carrier G.F., Greenspan H.P
. Water waves of finite amplitude on
a sloping beach // Journal of Fluid Mechanics, 1958, 4, p. 97–109.
[Cea, Puertas,
Vázquez-Cendó,
2007]
Cea L., Puertas J., Vázquez-Cendón M.-E
. Depth Averaged
Modelling of Turbulent Shallow Water Flow with Wet-Dry Fronts
// Archives of Computational Methods in Engineering, 2007, 14
(3), 303–341.
[Courant, Isaacson,
Rees, 1952]
Courant R., Isaacson E., Rees M.
On the solution of nonlinear
hyperbolic differential equations by finite differences // Communs
Pure and Appl. Math., 1952, 5 (3). p. 24–255.
[Cozzolino, 2011]
Cozzolino, L., Della Morte, R., Covelli, C., Del Giudice, G.,
Pianese, D.
, 2011. Numerical solution of the discontinuous-bottom
shallow-water equations with hydrostatic pressure distribution at
the step // Advances in Water Resources, 34, p. 1413–1426. https://
doi.org/10.1016/j.advwatres.2011.07.009
[Cunge, Holly,
Verway, 1980]
Cunge G.A., Holly F.M.,
and
A. Verway.
Practical Aspects of
Computational River Hydraulics. Pitman Publishing LTD,
London, 1980.
[Delestre et al.,
2013]
Delestre, O., Lucas, C., Ksinant, P.-A., Darboux, F., Laguer-
re, C., Vo, T.-N.-T., James, F., Cordier, S.,
2013. SWASHES: a
compilation of shallow water analytic solutions for hydraulic
and environmental studies: Analytic solutions for shallow water
equations // Int. J. Numer. Meth. Fluids, 72, p. 269–300. https://
doi.org/10.1002/fld.3741
[Delis, Skeels,
Ryrie, 2000]
Delis A.I., Skeels C.P. and Ryrie S.C.
Evaluation of some
approximate Riemann solvers for transient open channel flows //
J. Hydraulic Research, 38 (3), 2000.
[Fujihara,
Borthwick, 2000]
Fujihara M., Borthwick A.G.L.
Godunov-Type Solution of
Curvilinear Shallow-Water Equations // Journal of Hydraulic
Engineering, 2000, 126 (11). p. 827–836.
[Gerbeau,
Perthame, 2001]
Gerbeau J.-F., Perthame B
. Derivation of viscous Saint-Venant
system for laminar shallow water; Numerical validation // Discrete
& Continuous Dynamical Systems - B. 2001 1 (1), p. 89–102.
[Geuzaine,
Remacle, 2009]
C. Geuzaine
and
J.-F
.
Remacle
. Gmsh: a three-dimensional finite
element mesh generator with built-in pre- and post-processing
facilities. International Journal for Numerical Methods in
Engineering, 79(11), p. 1309–1331, 2009.
[Glaister, 1995]
Glaister P.
A weak formulation of Roe’s approximate Riemann
solver applied to the St. Venant equations // J. Comput. Phys., 116
(1), 1995.
[Goutal, Maurel,
1997]
Goutal N., Maurel F.
Proceedings of the 2nd workshop on dam-
break wave simulation // Electricité de France, Direction des
études et recherches, 1997.
342
Do'stlaringiz bilan baham: |