3- Mavzu. Integrallarni hisoblash
1-masala. Quyidagi funksiyalarni boshlang`ich funksiyasini toping.
a) y(x)= 4∙x3 -6∙x2-4∙x+3
b) y(x)= 4∙sin(3∙x-1)
Yechish:
a) F(x)= x4 – x3 – x2 +3x+C=x4-2x3-2x2+3x+C
Haqiqatdan ham, ta`rifga ko`ra
F′ (x) =y(x) shartni qanoatlantirishi kerak
F′ (x)= (x4-2x3-2x2+3x+C)′ = (x4)′ - (2x3)′ - (2x2)′ + (3x)′ + (C)′=4x3 – 6x2-4x+3
b) Mazkur funksiyaning boshlang`ich funksiyasi
F(x)= – cos (3x-1)+C ga teng.
Haqiqatdan ham,
F′ (x) =[ – cos (3x-1)+C]′ = (– cos(3x-1))′+ (C)′ =
= – ( cos(3x-1))′ + 0 = – (–sin (3x-1))∙(3x-1)′ =
= sin (3x-1)∙3 = 4sin (3x-1)
2- masala. Aniq integrallarni hisoblang.
a) ; b)
Yechish. Topshiriqni bajarishda integrallash qoidalari va formulalaridan foydalanamiz.
a)
b)
Do'stlaringiz bilan baham: |