Системы Ф.Тейлора и Ф.Гилбрета, несомненно, внесли, существенный вклад в изучение элементарных действий и операций. Однако с помощью мотор-но-временного анализа движений в том виде, в котором он был предложен, нельзя выявить структуру и механизмы целостной исполнительной деятельности человека.
Надо подчеркнуть...,— писал в 1930 г. Н.А.Бернштейн, — что не только методы, но и самое понятие рационализации движений, далеко не так просты, как мыслилось раньше. Нехитрая борьба Тейлора, а позднее Гилбрета с лишними движениями и понимание биомеханической операции как простой суммы последовательных движений, которую можно просеивать, как зерно на сортировке, начинает уступать свое место пониманию двигательного комплекса как органически нераздельного целого, всегда отзывающегося на изменения какой-нибудь одной детали перестройкой всех остальных [10, с.7].
Подобный инженерный подход к проектированию работы (при всей его первоначальной полезности) подвергается справедливой критике по ряду оснований. Очевидными следствиями предельной симплификации труда, сведения его к отдельным элементарным двигательным актам являются монотония и слабая удовлетворенность работой. И то и другое отрицательно сказывается на производительности труда.
Что касается более сложных видов трудовой деятельности, то по отношению к ним такой подход уже исчерпал свои "оптимизационные" возможности. А сложность исполнительных действий настолько возрастает, что стандартные "моторные формы" не могут обеспечить ее эффективное выполнение.
Это справедливо по отношению и к станочнику, и к летчику. Современное механизированное, автоматизированное и компьютеризированное производство требует от человека выполнения не только заученных, усвоенных действий, но и действий, так сказать, беспрецедентных, которые необходимо не вспоминать, а построить в новой неожиданно возникшей ситуации. Все более распространенными являются случаи, когда при профессиональном обучении невозможно воспроизвести все существенные условия реального трудового процесса, и доучивание происходит при выполнении не учебного, а трудового, исполнительного действия. Адаптация к реальным условиям особенно трудна, если выполнение действий требует совершенной сенсомоторной координации. Ярким примером подобных ситуаций может быть деятельность космонавтов, которым в условиях невесомости необходимо осуществлять стыковку, расстыковку, переходить из одного объекта в другой, выходить в открытый космос, оперировать ручным инструментом, совершать ручную посадку, т.е. оперировать органами управления в переменных условиях гравитации, трансформирующих привычные сенсомоторные координации, силовой рисунок хорошо освоенных прежде движений. В частности, невесомость влияет не только на двигательную сферу, но может вызвать разнообразные неприятные ощущения, нестойкие пространственные иллюзии или даже явления деперсонализации и дереализации восприятий субъекта, а во время отдыха сюрреалистические сновидения.
Не меньшую психическую нагрузку вызывает необходимость осуществления исполнительных действий в условиях задержанной обратной связи о результативности выполненного действия. К числу таких действий относятся управление луноходом, где задержка не превышает нескольких секунд, и управление супертанкером, где
81
задержка соответствующих эволюции корабля после осуществления управляющего действия исчисляется несколькими минутами. Появление целого ряда сравнительно новых видов деятельности, связанных с управлением космическими кораблями и станциями, дистанционным исследованием планет, манипуляциями радиоактивными элементами, управлением разнообразными движущимися объектами, в том числе и роботами, привело к тому, что в эргономике в качестве специального объекта исследования выделилась деятельность оператора-манипулятора. В этом виде деятельности главенствующую роль играют перцептивно-моторные координации и взаимодействия, хотя, разумеется, значительную роль играет также аппарат образного и понятийного мышления. Исполнительные действия оператора-манипулятора реализуются посредством так называемых регламентированных движений, требующих высокой не только пространственной, но и временной точности. Это означает, что с точки зрения эффективности их выполнения информативным показателем являются, наряду с конечным ре-зультом действия (как в случае нажатия на кнопку, клавишу, тумблер), также текущие характеристики движений, определяющие динамику объекта управления.
Совершенные перцептивно — моторные координации необходимы и для выполнения многих технологических процессов. Ярким примером является деятельность по изготовлению и эксплуатации микроустройств. Размеры микрообъектов и необходимая плотность их компоновки предъявляют такие высокие требования к технологии их изготовления, что производство приборов на их основе стало ювелирной работой. Трудовая деятельность человека, занятого в сфере сборки, например интегральных схем, осуществляется в условиях постоянного зрительного контроля, повышенной напряженности, обусловленной необходимостью выполнять высокоточные и тонкокоординированные, прецизионные двигательные акты. Влияние этих факторов усугубляется еще и тем, что размеры микроустройств находятся на грани видимости невооруженным глазом и визуальный контроль технологических операций возможен лишь при применении увеличивающих оптических приборов. Хорошо известно, что их использование имеет в качестве следствий закре-пощенность позы, гипокинезию, суженное поле зрения и т.п.
Do'stlaringiz bilan baham: |