problems and historical background


Legendre’s Duplication Formula



Download 310,22 Kb.
bet3/5
Sana10.07.2022
Hajmi310,22 Kb.
#770519
1   2   3   4   5
Bog'liq
mad 1

Legendre’s Duplication Formula
In view of the definition (2) it is not difficult to show that
(13)
which follows also from Legendre’s duplication formula for the Gamma function, viz [Erdelyi et al. (1953, p. 5, Equation (15))]
(14)
Gauss’s Multiplication Theorem
For every positive integer m, we have
(15)
which reduces to (13) when m = 2. Starting from (15) with , it can be proved that [Erdelyi et al. (1953, p. 4, Equation (11))]
(16)



which is known in the literature as Gauss’s multiplication theorem for the Gamma function.




The Gaussian Hypergeometric Series

In terms of the Pochhammer symbol defined by (2), we can rewrite the definition 1.1(1) in the form:


(17)
The infinite series in (17) obviously reduces to the elementary geometric series
(18)
in its special cases when
(19) (i) a = c and b=1; (ii) a = 1 and b = c.
Hence it is called the hypergeometric series or, more precisely, Gauss’s hypergeometric series after the famous German mathematician Carl Friedrich Gauss (1777-1855) who in the year 1812 introduced this scries into analysis and gave the F-notation for it.
By d’Alembert’s ratio test, it is easily seen that the hypergeometric series in (17) converges absolutely within the unit circle, that is, when |z| < 1, provided that the denominator parameter c is neither zero nor a negative integer. Notice, however, that if either or both of the • numerator parameters a and b in (17) is zero or a negative integer, the hypergeometric series terminates in view of (12), and the question of convergence does not enter the discussion.
Further tests readily show that the hypergeometric series in (17), when |z| = 1 (that is, on the unit circle), is

  1. absolutely convergent if Re(c - a - b)> 0;

  2. conditionally convergent

  3. divergent if

As a matter of fact, in Case (i) we are led to the well-known Gauss’s summation theorem:



Download 310,22 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish