problems and historical background



Download 310,22 Kb.
bet5/5
Sana10.07.2022
Hajmi310,22 Kb.
#770519
1   2   3   4   5
Bog'liq
mad 1

$ (<*)»я+и(Р)т Xм yn
2 —T Г “7 ’


(Y)m+«
n\

he work of Humbert has been described reasonably fully by Appeli and Катрё de F^riet (1926, pp. 124-135), and the definitions and convergence conditions of all of these 20 confluent hypergeometric series in two variables are given also in Erddlyi et al. (1953, pp. 225-228). The definitions of Фь Ф2 and S2, given in Erddlyi et al. [op. tit., p. 225, Equations (20), (21), and p. 226, Equation (26)] are in error; we first recall here the corrected definitions of Ф! and Ф2:


H\y\<w>
(
0
(Y)m+n nil n\

17) Ф2[Р, P'; y; x, y] =
|x| < «>, |y| < oo,
so that
(18) Ф,[а, P; y; x, y] = lim F,[a, p, p'; y; x, уlP']
= lim Fi[a, p, 1/e; y; ey],
e-*0
and
(19) Ф2[р, P'; Y; x, y] = Urn Ffa p, p'; Y; xhx, yla]
= jim Fjll/e, p, p'; y; ex, ey]

which follow, in view of 1.2 (26), from (2), (16) and (17).


F
(20)


Фз[Р;
y; ■*» y] =


| (
P)W
т,л»о (y)m+ml n\

or the sake of completeness, we also record here the definitions of similar confluent forms of the remaining Appel! series F2t F3 and F4:
\x\ < 00, |y| < °°;
*
Vi[a, p; Y. Y';jf»
У]

(21)
(tt)m-*-n(P)m
m£- 0 (Y)m(Y')« "»! n!
M
(22)


^[a;
у, y'; *, y] =


(23)



Ei[a, a', P;
y; *, y]


~ (a)
m+„ Xя* ул
2/
"••n=0 (Y)m(Y')n w! n!
\x\ < |y| < oo;
= 2 —— ; ~5
"'•л(Y)m
И < i. Ы <

< i. M <
g
(24) S
2[a, p; y; •*, y]
UP)m У
т-л“° (у)л»+/. «!
W < !» Ы < 00
Notice that

  1. lim Ф2[р, 1/e; y; at, ey] = Ф3[р; у; at, y],

s—»0

  1. lim ЧМог, 1/e; y, y'; ex, y] = Ч^а; y, y'\*, y] and

  2. lim Si[a, 1/e, p; y; *, ey] = H2[a, p; у; x, у].

E—»0
Катрё de Ftxiet’s'Series and Its Generalizations
Just as the Gaussian series 2Ft was generalized to pFq by increasing the numbers of the numerator and denominator parameters, the four Appell series were unified and generalized by Катрё de Fdriet (1921) who defined a general hypergeometric series in two variables [see Appell and Катрё de Рёг1е1 (1926, p. 150, Equation (29))]. The notation introduced by Катрё de Feriet [loc. cit.] for his double hypergeometric series of
superior order was subsequently abbreviated by Burchnall and Chaundy (1941, p. 112). We recall here the definition of a more general double hypergeometric series (than the one defined by Катрё de Feriet) in a slightly modified notation! [see, for example, Srivastava and Panda (1976a, p. 423, Equation (26))]:
(
(28)
a
py.(bq); Ы; ~| Ху
у I
0/):(fU;(Y„); J
„ П («,),« П ( ft),Д (ft),
• П («,),„ П (ft), П (у,).r] j!
/“• y-1 /-»
where, for convergence,
(0 P + 4 < l + m + 1, p + к < l + n + 1, |x| < «, \y\ < <*>,
or
(ii) p + q- l+ m+l, p + k = l + n + l, and
(29) { + \У\1КР< 1.
[ max{|*|, |yj) < 1, if p < l.
Although the double hypergeometric series defined by (28) reduces to the Катрё de Рёг5е1 series in the special case:
q — к and m = n,
yet it is usually referred to in the literature as the Катрё de Рёг1е1 series.
A further generalization of the (so-called) Катрё de Feriet series (28) is due to Srivastava and Daoust (1969a) who indeed defined an extension of the p4?q series [cf. 1.2(38)] in two variables. More generally, in Section 1.4 we shall give the definition of an interesting multivariable extension of which is referred to in the literature as the generalized Lauricella series in several variables; it is due also to Srivastava and Daoust (1969b, p. 454).
We conclude this section by recording the following instances in which the Катрё de F6riet series (28) can be expressed in terms of generalized
t.Here, and elsewhere in this book, we find it convenient to abbreviate the array a, simply by (e,,), with similar interpretations for (b9), el cetera.
[«




Га„ ...

, a*:-;-;

(30)

F&

Xj




Lp„ ...

> Pv*~




Г-.«ь

... , (Xp-,yi, .

(31)










L-:Pi,

..., P*;&i, ■




1. "] [Yi, - ,Vr; ]
pi P,; J rFs L -. J
Г
(32)
а„ ... f ocp:v;o; П Г аь ..., ap> v + о; 1

„ П («,),« П ( ft),Д (ft), 32

Download 310,22 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish