Partial differential equations


Inviscid Burgers’ Equation



Download 1,53 Mb.
Pdf ko'rish
bet28/30
Sana10.12.2019
Hajmi1,53 Mb.
#29388
1   ...   22   23   24   25   26   27   28   29   30
Bog'liq
20050415 English


13.10
Inviscid Burgers’ Equation
Fluid mechanics problems are highly nonlinear. The governing PDEs form a nonlinear system
that must be solved for the unknown pressures, densities, temperatures and velocities. A
single equation that could serve as a nonlinear analog must have terms that closely duplicate
the physical properties of the fluid equations, i.e. the equation should have a convective
terms (uu
x
), a diffusive or dissipative term (µu
xx
) and a time dependent term (u
t
). Thus
the equation
u
t
uu
x
µu
xx
(13.10.1)
is parabolic. If the viscous term is neglected, the equation becomes hyperbolic,
u
t
uu
x
= 0.
(13.10.2)
This can be viewed as a simple analog of the Euler equations for the flow of an inviscid fluid.
The vector form of Euler equations is
∂U
∂t
+
∂E
∂x
+
∂F
∂y
+
∂G
∂z
= 0
(13.10.3)
where the vectors U, E, F, and are nonlinear functions of the density (ρ), the velocity
components (u, v, w), the pressure (p) and the total energy per unit volume (E
t
).
=








ρ
ρu
ρv
ρw
E
t








,
(13.10.4)
320

=








ρu
ρu
2
p
ρuv
ρuw
(E
t
p)u








,
(13.10.5)
=








ρv
ρuv
ρv
2
p
ρvw
(E
t
p)v








,
(13.10.6)
=








ρw
ρuw
ρvw
ρw
2
p
(E
t
p)w








.
(13.10.7)
In this section, we discuss the inviscid Burgers’ equation (13.10.2). As we have seen in a
previous chapter, the characteristics may coalesce and discontinuous solution may form. We
consider the scalar equation
u
t
(u)
x
= 0
(13.10.8)
and if and are vectors
u
t
Au
x
= 0
(13.10.9)
where A(u) is the Jacobian matrix
∂F
i
∂u
j
. Since the equation is hyperbolic, the eigenvalues
of the Matrix are all real. We now discuss various methods for the numerical solution of
(13.10.2).
13.10.1
Lax Method
Lax method is first order, as in the previous section, we have
u
n+1
j
=
u
n
j+1
u
n
j−1
2

t
x
F
n
j+1
− F
n
j−1
2
.
(13.10.1.1)
In Burgers’ equation
(u) =
1
2
u
2
.
(13.10.1.2)
The amplification factor is given by
= cos β
− i
t
x
sin β
(13.10.1.3)
321

−0.5
−0.4
−0.3
−0.2
−0.1
0
0.1
0.2
0.3
0.4
0.5
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
x
u
solution at t=19 dt with dt=dx
−0.5
−0.4
−0.3
−0.2
−0.1
0
0.1
0.2
0.3
0.4
0.5
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
x
u
solution at t=19 dt with dt=.6 dx
Figure 83: Solution of Burgers’ equation using Lax method
where is the Jacobian
dF
du
, which is just for Burgers’ equation. The stability requirement
is
t
x
u
max
≤ 1,
(13.10.1.4)
because u
max
is the maximum eigenvalue of the matrix A. See Figure 83 for the exact
versus numerical solution with various ratios
t
x
. The location of the moving discontinuity
is correctly predicted, but the dissipative nature of the method is evident in the smearing of
the discontinuity over several mesh intervals. This smearing becomes worse as the Courant
number decreases. Compare the solutions in figure 83.
13.10.2
Lax Wendroff Method
This is a second order method which one can develop using Taylor series expansion
u(x, t + ∆t) = u(x, t) + ∆t
∂u
∂t
+
1
2
(∆t)
2

2
u
∂t
2
+
· · ·
(13.10.2.1)
Using Burgers’ equation and the chain rule, we have
u
t
=
−F
x
=
−F
u
u
x
=
−Au
x
(13.10.2.2)
u
tt
=
−F
tx
=
−F
xt
=
(F
t
)
x
.
Now
F
t
F
u
u
t
Au
t
=
−AF
x
(13.10.2.3)
Therefore
u
tt
=
− (−AF
x
)
x
= (AF
x
)
x
.
(13.10.2.4)
322

Substituting in (13.10.2.1) we get
u(x, t + ∆t) = u(x, t)
− t
∂F
∂x
+
1
2
(∆t)
2

∂x

A
∂F
∂x

+
· · ·
(13.10.2.5)
Now use centered differences for the spatial derivatives
u
n+1
j
u
n
j

t
x
F
n
j+1
− F
n
j−1
2
+
1
2
t
x

2
)
A
n
j+1/2
F
n
j+1
− F
n
j
− A
n
j−1/2
F
n
j
− F
n
j−1
*
(13.10.2.6)
where
A
n
j+1/2
A

u
n
j
u
n
j+1
2

.
(13.10.2.7)
For Burgers’ equation, =
1
2
u
2
, thus and
A
n
j+1/2
=
u
n
j
u
n
j+1
2
,
(13.10.2.8)
A
n
j−1/2
=
u
n
j
u
n
j−1
2
.
(13.10.2.9)
The amplification factor is given by
= 1
− 2
t
x
A

2
(1
− cos β− 2i
t
x
sin β.
(13.10.2.10)
Thus the condition for stability is
t
x
u
max
≤ 1.
(13.10.2.11)
The numerical solution is given in figure 84. The right moving discontinuity is correctly
positioned and sharply defined. The dispersive nature is evidenced in the oscillation near
the discontinuity.
The solution shows more oscillations when ν .6 than when ν = 1When ν is reduced
the quality of the solution is degraded.
The flux (u) at x
j
and the numerical flux f
j+1/2
, to be defined later, must be consistent
with each other. The numerical flux is defined, depending on the scheme, by matching the
method to
u
n+1
j
u
n
j

t
x

f
n
j+1/2
− f
n
j−1/2

.
(13.10.2.12)
In order to obtain the numerical flux for Lax Wendroff method for solving Burgers’ equation,
let’s add and subtract F
n
j
in the numerator of the first fraction on the right, and substitute
323

−0.5
−0.4
−0.3
−0.2
−0.1
0
0.1
0.2
0.3
0.4
0.5
0
0.2
0.4
0.6
0.8
1
1.2
x
u
solution at t=19 dt with dt=dx
−0.5
−0.4
−0.3
−0.2
−0.1
0
0.1
0.2
0.3
0.4
0.5
0
0.2
0.4
0.6
0.8
1
1.2
1.4
x
u
solution at t=19 dt with dt=.6 dx
Figure 84: Solution of Burgers’ equation using Lax Wendroff method
for A
u
n+1
j
u
n
j

t
x

F
n
j+1
F
n
j
− F
n
j
− F
n
j−1
2

1
2
t
x

u
n
j
u
n
j+1
2
F
n
j+1
− F
n
j

u
n
j
u
n
j−1
2
F
n
j
− F
n
j−1

(13.10.2.13)
Recall that (u) =
1
2
u
2
, and factor the difference of squares to get
f
j+1/2
=
1
2
(F
j
F
j+1
)

1
2
t
x
(u
j+1/2
)
2
(u
j+1
− u
j
).
(13.10.2.14)
The numerical flux for Lax method is given by
f
j+1/2
=
1
2

F
j
F
j+1

x
t
(u
j+1
− u
j
)

.
(13.10.2.15)
Lax method is monotone, and Gudonov showed that one cannot get higher order than
first and keep monotonicity.
13.11
Viscous Burgers’ Equation
Adding viscosity to Burgers’ equation we get
u
t
uu
x
µu
xx
.
(13.11.1)
The equation is now parabolic. In this section we mention analytic solutions for several
cases. We assume Dirichlet boundary conditions:
u(0, t) = u
0
,
(13.11.2)
324

u(L, t) = 0.
(13.11.3)
The steady state solution (of course will not require an initial condition) is given by
u
0
ˆ
u

1
− e
ˆuRe
L
(x/L−1)
1 + e
ˆuRe
L
(x/L−1)

(13.11.4)
where
Re
L
=
u
0
L
µ
(13.11.5)
and ˆ
is the solution of the nonlinear equation
ˆ
u
− 1
ˆ
+ 1
e
ˆuRe
L
.
(13.11.6)
The linearized equation (13.10.1) is
u
t
cu
x
µu
xx
(13.11.7)
and the steady state solution is now
u
0

1
− e
R
L
(x/L−1)
1
− e
−R
L

(13.11.8)
where
R
L
=
cL
µ
.
(13.11.9)
The exact unsteady solution with initial condition
u(x, 0) = sin kx
(13.11.10)
and periodic boundary conditions is
u(x, t) = e
−k
2
µt
sin k(x
− ct).
(13.11.11)
The equations (13.10.1) and (13.11.7) can be combined into a generalized equation
u
t
+ (bu)u
x
µu
xx
.
(13.11.12)
For = 0 we get the linearized Burgers’ equation and for = 0, b = 1, we get the nonlinear
equation. For =
1
2
, b =
1 the generalized equation (13.11.12) has a steady state solution
=

c
b

1 + tanh
c(x
− x
0
)
2µ

.
(13.11.13)
Hence if the initial is given by (13.11.13), then the exact solution does not vary with time.
For more exact solutions, see Benton and Platzman (1972).
325

The generalized equation (13.11.12) can be written as
u
t
+ ˆ
F
x
= 0
(13.11.14)
where
ˆ
cu +
1
2
bu
2
− µu
x
,
(13.11.15)
or as
u
t
F
x
µu
xx
,
(13.11.16)
where
cu +
1
2
bu
2
,
(13.11.17)
or
u
t
A(u)u
x
µu
xx
.
(13.11.18)
The various schemes described earlier for the inviscid Burgers’ equation can also be applied
here, by simply adding an approximation to u
xx
.
13.11.1
FTCS method
This is a Forward in Time Centered in Space (hence the name),
u
n+1
j
− u
n
j
t
c
u
n
j+1
− u
n
j−1
2∆x
µ
u
n
j+1
− 2u
n
j
u
n
j−1
(∆x)
2
.
(13.11.1.1)
Clearly the method is one step explicit and the truncation error
T.E. O
t, (∆x)
2
.
(13.11.1.2)
Thus it is first order in time and second order in space. The modified equation is given by
u
t
cu
x
=

µ

c
2
t
2

u
xx
c
(∆x)
2
3
3r
− ν
2

1
2

u
xxx
c
(∆x)
3
12

r
ν
− 3
r
2
ν
− 2ν + 10νr − 3ν
3

u
xxxx
+
· · ·
(13.11.1.3)
where as usual
µ
t
(∆x)
2
,
(13.11.1.4)
ν c
t
x
.
(13.11.1.5)
If =
1
2
and ν = 1, the first two terms on the right hand side of the modified equation vanish.
This is NOT a good choice because it eliminated the viscous term that was originally in the
PDE.
326

o  r=.49  nu ^2 > 2r
x  unit circle      
  0.1714
  0.3429
  0.5143
  0.6857
  0.8571
  1.029
  1.2
30
210
60
240
90
270
120
300
150
330
180
0
o  r=.49  nu ^2 < 2r
x  unit circle      
  0.2
  0.4
  0.6
  0.8
  1
30
210
60
240
90
270
120
300
150
330
180
0
Figure 85: Stability of FTCS method
We now discuss the stability condition. Using Fourier method, we find that the amplifi-
cation factor is
= 1 + 2r(cos β
− 1) − iν sin β.
(13.11.1.6)
In figure 85 we see a polar plot of as a function of ν and β for ν < 1 and r <
1
2
and ν
2
2r
(left) and ν
2
2(right). Notice that if we allow ν
2
to exceed 2r, the ellipse describing G
will have parts outside the unit circle and thus we have instability. This means that taking
the combination of the conditions from the hyperbolic part (ν < 1) and the parabolic part
(r <
1
2
) is not enough. This extra condition is required to ensure that the coefficient of u
xx
is positive, i.e.
c
2
t
2
≤ µ.
(13.11.1.7)
Let’s define the mesh Reynolds number
Re
x
=
cx
µ
=
ν
r
,
(13.11.1.8)
then the above condition becomes
Re
x

2
ν
.
(13.11.1.9)
It turns out that the method is stable if
ν
2
≤ 2r,
and r

1
2
.
(13.11.1.10)
This combination implies that ν
≤ 1Therefore we have
2ν
≤ Re
x

2
ν
.
(13.11.1.11)
For Re
x
2 FTCS will produce undesirable oscillations. To explain the origin of these
oscillations consider the following example. Find the steady state solution of (13.10.1) subject
to the boundary conditions
u(0, t) = 0,
u(1, t) = 1
(13.11.1.12)
327

and the initial condition
u(x, 0) = 0,
(13.11.1.13)
using an 11 point mesh. Note that we can write FTCS in terms of mesh Reynolds number
as
u
n+1
j
=
r
2
(2
− Re
x
u
n
j+1
+ (1
− 2r)u
n
j
+
r
2
(2 + Re
x
u
n
j−1
.
(13.11.1.14)
0
0.5
1
−0.2
0
0.2
0.4
0.6
0.8
x
u
solution at t=0
0
0.5
1
−0.2
0
0.2
0.4
0.6
0.8
1
x
solution at t=dt
0
0.5
1
−0.2
0
0.2
0.4
0.6
0.8
1
x
solution at t=2 dt
0
0.5
1
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1
x
solution at t=3 dt
Figure 86: Solution of example using FTCS method
For the first time step
u
1
j
= 0,
j < 10
and
u
1
10
=
r
2
(2
− Re
x
0,
u
1
11
= 1,
and this will initiate the oscillation. During the next time step the oscillation will propagate
to the left. Note that Re
x
2 means that u
n
j+1
will have a negative weight which is
physically wrong.
To eliminate the oscillations we can replace the centered difference for cu
x
term by a first
order upwind which adds more dissipation. This is too much. Leonard (1979) suggeted a
third order upstream for the convective term (for c > 0)
u
n
j+1
− u
n
j−1
2∆x

u
n
j+1
− 3u
n
j
+ 3u
n
j−1
− u
n
j−2
6∆x
.
13.11.2
Lax Wendroff method
This is a two step method:
u
n+1/2
j
=
1
2
u
n
j+1/2
u
n
j−1/2

t
x
F
n
j+1/2
− F
n
j−1/2
r

u
n
j−3/2
− 2u
n
j−1/2
u
n
j+1/2
+
u
n
j+3/2
− 2u
n
j+1/2
u
n
j−1/2

(13.11.2.1)
328

The second step is
u
n+1
j
u
n
j

t
x
F
n+1/2
j+1/2
− F
n+1/2
j−1/2
r
u
n
j+1
− 2u
n
j
u
n
j−1
.
(13.11.2.2)
The method is first order in time and second order in space. The linear stability condition
is
t
(∆x)
2
A
2
+ 2µ
≤ 1.
(13.11.2.3)
329

Download 1,53 Mb.

Do'stlaringiz bilan baham:
1   ...   22   23   24   25   26   27   28   29   30




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish