Partial differential equations



Download 1,53 Mb.
Pdf ko'rish
bet19/30
Sana10.12.2019
Hajmi1,53 Mb.
#29388
1   ...   15   16   17   18   19   20   21   22   ...   30
Bog'liq
20050415 English


Problems
1. Solve the wave equation
u
tt
c
2

2
u,
−∞ < x < ∞ ,
−∞ < y < ∞,
u(x, y, 0) = (x, y),
u
t
(x, y, 0) = 0.
213

SUMMARY
Definition of Fourier Transform and its Inverse:
(ω) =
1
2π


−∞
(x)e
−iωx
dx
(x) =


−∞
(ω)e
iωx
dω .
Table of Fourier Transforms
(x)
(ω)
e
−αx
2
1

4πα
e

ω2
4α
Gaussian
∂f
∂t
∂F
∂t
derivatives
∂f
∂x
iωF (ω)

2
f
∂x
2
−ω
2
(ω)
1
2π


−∞
(ξ)g(x
− ξ)dξ F (ω)G(ω)
convolution
δ(x
− x
0
)
1
2π
e
−iωx
0
Dirac
(x
− β)
e
−iωβ
(ω)
shift
xf (x)
i
dF

multiplication by x
2α
x
2
α
2
e
−|ω|α

x
0
φ(t)dt
+
1

F(φ(x))
(x) =

0
|x| > a
1
|x| < a
1
π
sin 
ω
214

Definition of Fourier Sine Transform and its Inverse:
S((x)) =
2
π


0
(x) sin ωx dx
(x) =


0
(ω) sin ωx dω .
Table of Fourier Sine Transforms
(x)
S[]
df
dx
−ωC[f]
d
2
f
dx
2
2
π
ωf (0)
− ω
2
S[]
x
x
2
β
2
e
−ωβ
e
−αx
2
π
ω
α
2
ω
2

x
0
φ(t)dt
1
ω
C(φ(x))
1
2
π
1
ω
1
π
(

0
(ξ)[g(x
− ξ− g(ξ)]dξ S[f]C[g]
Definition of Fourier Cosine Transform and its Inverse:
C((x)) = (ω) =
2
π


0
(x) cos ωx dx
(x) =


0
(ω) cos ωx dω
Table of Fourier Cosine Transforms
(x)
C[]
df
dx

2
π
(0) + ωS[]
d
2
f
dx
2

2
π
df
dx
(0)
− ω
2
C[]
β
x
2
β
2
e
−ωβ
e
−αx
2
π
α
α
2
ω
2
e
−αx
2
2

4πα
e

ω2
4α

x
0
φ(t)dt

1
ω
S(φ(x))
1
π
(

0
g(ξ)[(x
− ξ) + f(ξ)]dξ C[f]C[g]
215

Definition of Double Fourier Transform and its Inverse:
(ω
1
, ω
2
) =
1
(2π)
2


−∞


−∞
(x, y)e
−iω
1
x
e
−iω
2
y
dx dy
(x, y) =


−∞


−∞
(ω
1
, ω
2
)e

1
x
e

2
y

1

2
.
Table of Double Fourier Transforms
(x, y)
(
ω)
f
x

1
(
ω)
f
y

2
(
ω)

2
f
− ω
2
(
ω)
π
β
e
−r
2
/4β
e
−βω
2
(
r
−  β)
e
−iω·β
(
ω)
1
(2π)
2
 
(
r
0
)g(
r
−  r
0
)d
r
0
(
ω)G(
ω)
216

10
Green’s Functions
10.1
Introduction
In the previous chapters, we discussed a variety of techniques for the solution of PDEs,
namely: the method of characteristics (for hyperbolic problems only, linear as well as non-
linear), the method of separation of variables (for linear problem on certain domains) and
Fourier transform (for infinite and semi-infinite domains). The method of separation of
variables, when it works, it yields an infinite series which often converges slowly. Thus it
is difficult to obtain an insight into the over-all behavior of the solution, its behavior near
edges and so on. That’s why, the method of characteristics is preferable over the method of
separation of variables for hyperbolic problems. The Green’s function approach would allow
us to have an integral representation of the solution (as in the method of characteristics)
instead of an infinite series.
Physically, the method is obvious. To obtain the field, u, caused by a distributed source,
we calculate the effect of each elementary portion of source and add (integrate) them all. If
G(
r
r
0
) is the field at the observer’s point 
caused by a unit source at the source point 
r
0
,
then the field at caused by a source distribution ρ
r
0
) is the integral of ρ
r
0
)G(
r
r
0
) over
the whole range of 
r
0
occupied by the source. The function is called Green’s function. We
can satisfy boundary conditions in the same way. What may be surprising is that essentially
the same function gives the answer in both cases. Physically, this means that the boundary
conditions can be thought of as being equivalent to sources. We have seen this in Chapter
8 when discussing the method of eigenfunction expansion to solve inhomogeneous problems.
The inhomogeneous boundary conditions were replaced by homogeneous ones and the source
has been changed appropriately.
10.2
One Dimensional Heat Equation
In this section, we demonstrate the idea of Green’s function by analyzing the solution of the
one dimensional heat equation,
u
t
u
xx
,
< x < 1,
t > 0,
(10.2.1)
subject to
u(x, 0) = (x),
< x < 1,
(10.2.2)
u(0, t) = u(1, t) = 0.
(10.2.3)
The method of separation of variables yields the solution
u(x, t) =


n=1
a
n
sin nπx
· e
()
2
t
,
(10.2.4)
where a
n
are the Fourier coefficients of the expansion of (x) in Fourier sine series,
a
n
= 2

1
0
(x) sin nπxdx.
(10.2.5)
217

We substitute (10.2.5) into (10.2.4) to obtain after reversing the order of integration and
summation
u(x, t) =

1
0
(s)



n=1
2 sin nπs
· sin nπx · e
()
2
t

ds.
(10.2.6)
The quantity in parenthesis is called influence function for the initial condition. It expresses
the fact that the temperature at point at time is due to the initial temperature at
s. To obtain the temperature u(x, t), we sum (integrate) the influence of all possible initial
points, s.
What about the solution of the inhomogeneous problem,
u
t
u
xx
Q(x, t),
< x < 1,
t > 0,
(10.2.7)
subject to the same initial and boundary conditions? As we have seen in Chapter 8, we
expand and in the eigenfunctions sin nπx,
Q(x, t) =


n=1
q
n
(t) sin nπx,
(10.2.8)
with
q
n
(t) = 2

1
0
Q(x, t) sin nπxdx,
(10.2.9)
and
u(x, t) =


n=1
u
n
(t) sin nπx.
(10.2.10)
Thus we get the inhomogeneous ODE
˙u
n
(t) + ()
2
u
n
(t) = q
n
(t),
(10.2.11)
whose solution is
u
n
(t) = u
n
(0)e
()
2
t
+

t
0
q
n
(τ )e
()
2
(t−τ)
dτ,
(10.2.12)
where
u
n
(0) = a
n
= 2

1
0
(x) sin nπxdx.
(10.2.13)
Again, we substitute (10.2.13), (10.2.9) and (10.2.12) in (10.2.10) we have
u(x, t) =

1
0
(s)



n=1
2 sin nπs
· sin nπx · e
()
2
t

ds
+

1
0

t
0
Q(s, τ )



n=1
2 sin nπs
· sin nπx · e
()
2
(t−τ)

dτ ds.
(10.2.14)
We therefore introduce Green’s function
G(xs, t
− τ) = 2


n=1
sin nπs
· sin nπx · e
()
2
(t−τ)
,
(10.2.15)
218

and the solution is then
u(x, t) =

1
0
(s)G(xs, t)ds +

1
0

t
0
Q(s, τ )G(xs, t
− τ)dτds.
(10.2.16)
As we said in the introduction, the same Green’s function appears in both. Note that the
Green’s function depends only on the elapsed time t
− τ.
219

10.3
Green’s Function for Sturm-Liouville Problems
Consider the Sturm-Liouville boundary value problem
(p(x)y

(x))

q(x)y(x) = (x),
< x < 1
(10.3.1)
y(0)
− h
0
y

(0) = 0,
(10.3.2)
y(1)
− h
1
y

(1) = 0,
(10.3.3)
where p(x)
= 0, p

(x), q(x) and (x) are continuous on [01] and h
0
h
1
are real constants.
We would like to obtain Green’s function G(xs) so that the solution is
y(x) =

1
0
G(xs)(s)ds.
(10.3.4)
The function G(xs) is called Green’s function for (10.3.1)-(10.3.3) if it is continuous on
0
≤ x, s ≤ 1 and (10.3.4) uniquely solves (10.3.1)-(10.3.3) for every continuous function
(x).
To see why (10.3.4) is reasonable, we consider the steady state temperature in a rod. In
this case (x) represents a heat source intensity along the rod. Consider, a heat distribution
f
s
(x) of unit intensity localized at point in the rod: That is, assume that
f
s
(x) = 0,
for
|x − s| > ,
 > 0,
is small
and

s+
s−
f
s
(x)dx = 1.
(10.3.5)
Let y(x) = G

(xs) be the steady state temperature induced by the source f
s
(x).
As

→ 0, it is hoped that the temperature distribution G

(xs) will converge to a limit G(xs)
corresponding to a heat source of unit intensity applied at s. Now, imagine that the rod
is made of a large number () of tiny pieces, each of length 2, and let s
k
be a point in the
k
th
piece. The heat source (x) delivers an amount of heat 2f (s
k
) to the k
th
piece. Since
the problem is linear and homogeneous, the temperature at caused by the heating near s
k
is nearly G

(xs
k
)(s
k
)2, thus
y(x)

N

k=1
2G

(xs
k
)(s
k
),
(10.3.6)
is the total contribution from all pieces. As we let 
→ 0 and the number of pieces approach
infinity
y(x) = lim
0
N

k=1
2G

(xs
k
)(s
k
) =

1
0
G(xs)(s)ds.
(10.3.7)
This discussion suggests the following properties of Green’s function G(xs).
1. The solution G

(xs) with f
s
(x) satisfies
LG

f
s
(x) = 0,
for
|x − s| > 
(10.3.8)
221

where the operator
as defined in Chapter 6,
Ly (py

)

qy.
(10.3.9)
We can write this also as

d
dx

p(x)
d
dx
G(xs)

q(x)G(xs) = 0,
for x
s.
(10.3.10)
This is related to Dirac delta function to be discussed in the next section.
2. G(xs) satisfies the boundary conditions (10.3.2)-(10.3.3) since each G

(xs) does.
3.
The function G

(xs) has a continuous second derivative, since it is a solution to (10.3.1).
The question is how smooth the limit G(xs) is? It can be shown that the first derivative
has a jump discontinuity, i.e.
∂G(s
+
s)
∂x

∂G(s

s)
∂x
=

1
p(s)
,
(10.3.11)
where
s
±
= lim
0
(s
± ).
(10.3.12)
We now turn to the proof of (10.3.4) under simpler boundary conditions (h
0
h
1
= 0),
i.e.
y(0) = y(1) = 0.
(10.3.13)
The proof is constructive and called Lagrange’s method. It is based on Lagrange’s identity
(6.3.3).
Suppose we can find a function w
= 0 so that
Lw = 0.
(10.3.14)
Apply Lagrange’s identity with and w, to get
y
Lw − wLy 
d
dx
[p(wy

− w

y)] .
On the other hand,
w
Ly − yLw wf,
since
Lw = 0 and Ly f. Therefore we can integrate the resulting equation

d
dx
[p(wy

− yw

)] = wf,
(10.3.15)
and have a first order ODE for y. Thus is called an integrating factor for
Ly f.
Suppose we can find integrating factors and such that
Lu = 0,
u(0) = 0,
(10.3.16)
222

and
Lv = 0,
v(1) = 0,
(10.3.17)
i.e. each one satisfies only one of the boundary conditions. Choose to be either or v
from (10.3.16)-(10.3.17), thus by integration of (10.3.15) we have

x
0
u(s)(s)ds =
−p(x)(uy

− u

y),
(10.3.18)

1
x
v(s)(s)ds = +p(x)(vy

− v

y).
(10.3.19)
Note that the limits of integration are chosen differently in each case. Now we can eliminate
y

and get
v(x)

x
0
u(s)(s)ds u(x)

1
x
v(s)(s)ds =
−p(x)(x)y(x),
(10.3.20)
where the Wronskian (x) is
(x) =
u(x)
v(x)
u’(x)
v’(x)
.
(10.3.21)
It is easy to see that (exercise)
p(x)(x) = c.
(10.3.22)
Therefore
y(x) =

1
c

x
0
u(s)v(x)(s)ds

1
c

1
x
u(x)v(s)(s)ds
or
y(x) =

1
0
G(xs)(s)ds
(10.3.23)
where (if we choose =
1)
G(xs) =

u(s)v(x)
0
≤ s ≤ x ≤ 1
u(x)v(s)
0
≤ x ≤ s ≤ 1.
(10.3.24)
This completes the proof of (10.3.4) and we have a way to construct Green’s function by
solving (10.3.16)-(10.3.17).
Example Obtain Green’s function for the steady state temperature in a homogeneous rod of
length and with insulated lateral surface. Assume that the left end of the bar is at zero
temperature, the right end is insulated, and the source of heat is f(x). The problem can be
formulated mathematically as
−ku
xx
(x),
< x < L,
(10.3.25)
u(0) = 0,
(10.3.26)
u

(L) = 0.
(10.3.27)
223

To find Green’s function, we solve
−ku

= 0,
u(0) = 0,
(10.3.28)
−kv

= 0,
v

(L) = 0,
(10.3.29)
and choose =
1, i.e.
kW =
1.
(10.3.30)
The solution of each ODE satisfying its end condition is
ax,
(10.3.31)
b.
(10.3.32)
The constants amust be chosen so as to satisfy the Wronskian condition (10.3.30), i.e.
=
1
k
= 1
and therefore (10.3.24) becomes
G(xs) =









s
k
0
≤ s ≤ x ≤ L
x
k
0
≤ x ≤ s ≤ L.
(10.3.33)
Notice that Green’s function is symmetric as in previous cases; physically this means that
the temperature at due to a unit source at equals the temperature at due to a unit
source at x. This is called Maxwell’s reciprocity.
Now consider the Sturm-Liouville problem
Ly − λry f(x),
< x < 1,
(10.3.34)
subject to (10.3.2)-(10.3.3).
If λ = 0, this problem reduces to (10.3.1), while if f
≡ 0 we have the eigenvalue problem
of Sturm-Liouville type (Chapter 6). Assume that (10.3.1) has a Green’s function G(xs),
then any solution of (10.3.34) satisfies (moving λry to the right)
y(x) =

1
0
G(xs) [(s) + λr(s)y(s)] ds
or
y(x) = λ

1
0
G(xs)r(s)y(s)ds (x),
(10.3.35)
where
(x) =

1
0
G(xs)(s)ds.
(10.3.36)
224

Equation (10.3.35) is called a Fredholm integral equation of the second kind. The function
G(xs)r(s) is called its kernel. If (x)
≡ 0 then (10.3.35) becomes
y(x) = λ

1
0
G(xs)r(s)y(s)ds.
(10.3.37)
For later reference, equations (10.3.35), (10.3.37) can be easily symmetrized if r(x0. The
symmetric equation is
z(x) = λ

1
0
k(xs)z(s)ds + ˆ
(x),
(10.3.38)
where
z(x) =
+
r(x)y(x),
k(xs) = G(xs)
+
r(x)
+
r(s),
and
ˆ
(x) =
+
r(x)(x).
225

Download 1,53 Mb.

Do'stlaringiz bilan baham:
1   ...   15   16   17   18   19   20   21   22   ...   30




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish