Partial differential equations



Download 1,53 Mb.
Pdf ko'rish
bet16/30
Sana10.12.2019
Hajmi1,53 Mb.
#29388
1   ...   12   13   14   15   16   17   18   19   ...   30
Bog'liq
20050415 English


Problems
1. Solve Laplace’s equation on the sphere
u
rr
+
2
r
u
r
+
1
r
2
u
θθ
+
cot θ
r
2
u
θ
+
1
r
2
sin
2
θ
u
ϕϕ
= 0,
0
≤ r < a, < θ < π, < ϕ < 2π,
subject to the boundary condition
u
r
(a, θ, ϕ) = (θ).
2. Solve Laplace’s equation on the half sphere
u
rr
+
2
r
u
r
+
1
r
2
u
θθ
+
cot θ
r
2
u
θ
+
1
r
2
sin
2
θ
u
ϕϕ
= 0,
0
≤ r < a, < θ < π, < ϕ < π,
subject to the boundary conditions
u(a, θ, ϕ) = (θ, ϕ),
u(r, θ, 0) = u(r, θ, π) = 0.
3. Solve Laplace’s equation on the surface of the sphere of radius a.
176

SUMMARY
Heat Equation
u
t
k(u
xx
u
yy
)
u
t
k(u
xx
u
yy
u
zz
)
u
t
k

1
r

∂r

r
∂u
∂r

+
1
r
2

2
u
∂θ
2

Wave equation
u
tt
− c
2
(u
xx
u
yy
) = 0
u
tt
− c
2
(u
xx
u
yy
u
zz
) = 0
u
tt
c
2

1
r

∂r

r
∂u
∂r

+
1
r
2

2
u
∂θ
2

Laplace’s Equation
u
xx
u
yy
u
zz
= 0
1
r
(ru
r
)
r
+
1
r
2
u
θθ
u
zz
= 0
u
rr
+
2
r
u
r
+
1
r
2
u
θθ
+
cot θ
r
2
u
θ
+
1
r
2
sin
2
θ
u
φφ
= 0
Bessel’s Equation (inside a circle)
(rR

m
)

+

λr

m
2
r

R
m
= 0,
= 012, . . .
|R
m
(0)
| < ∞
R
m
(a) = 0
R
m
(r) = J
m
+
λ
mn
r

eigenfunctions
J
m
+
λ
mn
a

= 0
equation for eigenvalues.
Bessel’s Equation (outside a circle)
(rR

m
)

+

λr

m
2
r

R
m
= 0,
= 012, . . .
R
m
→ 0 as r → ∞
R
m
(a) = 0
R
m
(r) = Y
m
+
λ
mn
r

eigenfunctions
Y
m
+
λ
mn
a

= 0
equation for eigenvalues.
177

Modified Bessel’s Equation
(rR

m
)


λ
2
r
2
m
2
R
m
= 0,
= 012, . . .
|R
m
(0)
| < ∞
R
m
(r) = C
1m
I
m
(λr) + C
2m
K
m
(λr)
Legendre’s Equation
(1
− ξ
2


− 2ξΘ

α(1 + α)Θ = 0
Θ(ξ) = C
1
P
n
(ξ) + C
2
Q
n
(ξ)
α n
Associated Legendre Equation
(1
− ξ
2


− 2ξΘ

+

α(1 + α)

m
2
1
− ξ
2

Θ = 0
Θ(ξ) = C
1
P
m
n
(ξ) + C
2
Q
m
n
(ξ)
α n
178

8
Separation of Variables-Nonhomogeneous Problems
In this chapter, we show how to solve nonhomogeneous problems via the separation of
variables method. The first section will show how to deal with inhomogeneous boundary
conditions. The second section will present the method of eigenfunctions expansion for the
inhomogeneous heat equation in one space variable. The third section will give the solution
of the wave equation in two dimensions. We close the chapter with the solution of Poisson’s
equation.
8.1
Inhomogeneous Boundary Conditions
Consider the following inhomogeneous heat conduction problem:
u
t
ku
xx
S(x, t),
< x < L
(8.1.1)
subject to the inhomogeneous boundary conditions
u(0, t) = A(t),
(8.1.2)
u(L, t) = B(t),
(8.1.3)
and an initial condition
u(x, 0) = (x).
(8.1.4)
Find a function w(x, t) satisfying the boundary conditions (8.1.2)-(8.1.3). It is easy to see
that
w(x, t) = A(t) +
x
L
(B(t)
− A(t))
(8.1.5)
is one such function.
Let
v(x, t) = u(x, t)
− w(x, t)
(8.1.6)
then clearly
v(0, t) = u(0, t)
− w(0, t) = A(t− A(t) = 0
(8.1.7)
v(L, t) = u(L, t)
− w(L, t) = B(t− B(t) = 0
(8.1.8)
i.e. the function v(x, t) satisfies homogeneous boundary conditions. The question is, what
is the PDE satisfied by v(x, t)? To this end, we differentiate (8.1.6) twice with respect to x
and once with respect to t
v
x
(x, t) = u
x

1
L
(B(t)
− A(t))
(8.1.9)
v
xx
u
xx
− 0 = u
xx
(8.1.10)
v
t
(x, t) = u
t

x
L
˙
B(t)
− ˙A(t)
− ˙A(t)
(8.1.11)
179

and substitute in (8.1.1)
v
t
+ ˙
A(t) +
x
L
˙
B(t)
− ˙A(t)
kv
xx
S(x, t).
(8.1.12)
Thus
v
t
kv
xx
+ ˆ
S(x, t)
(8.1.13)
where
ˆ
S(x, t) = S(x, t)
− ˙A(t
x
L
˙
B(t)
− ˙A(t)
.
(8.1.14)
The initial condition (8.1.4) becomes
v(x, 0) = (x)
− A(0) 
x
L
(B(0)
− A(0)) = ˆ
(x).
(8.1.15)
Therefore, we have to solve an inhomogeneous PDE (8.1.13) subject to homogeneous bound-
ary conditions(8.1.7)-(8.1.8) and the initial condition (8.1.15).
If the boundary conditions were of a different type, the idea will still be the same. For
example, if
u(0, t) = A(t)
(8.1.16)
u
x
(L, t) = B(t)
(8.1.17)
then we try
w(x, t) = α(t)β(t).
(8.1.18)
At = 0,
A(t) = w(0, t) = β(t)
and at L,
B(t) = w
x
(L, t) = α(t).
Thus
w(x, t) = B(t)A(t)
(8.1.19)
satisfies the boundary conditions (8.1.16)-(8.1.17).
Remark: If the boundary conditions are independent of time, we can take the steady
state solution as w(x).
180

Problems
1. For each of the following problems obtain the function w(x, t) that satisfies the boundary
conditions and obtain the PDE
a.
u
t
(x, t) = ku
xx
(x, t) + x,
< x < L
u
x
(0, t) = 1,
u(L, t) = t.
b.
u
t
(x, t) = ku
xx
(x, t) + x,
< x < L
u(0, t) = 1,
u
x
(L, t) = 1.
c.
u
t
(x, t) = ku
xx
(x, t) + x,
< x < L
u
x
(0, t) = t,
u
x
(L, t) = t
2
.
2. Same as problem 1 for the wave equation
u
tt
− c
2
u
xx
xt,
< x < L
subject to each of the boundary conditions
a.
u(0, t) = 1
u(L, t) = t
b.
u
x
(0, t) = t
u
x
(L, t) = t
2
c.
u(0, t) = 0
u
x
(L, t) = t
d.
u
x
(0, t) = 0
u
x
(L, t) = 1
181

8.2
Method of Eigenfunction Expansions
In this section, we consider the solution of the inhomogeneous heat equation
u
t
ku
xx
S(x, t),
< x < L
(8.2.1)
u(0, t) = 0,
(8.2.2)
u(L, t) = 0,
(8.2.3)
u(x, 0) = (x).
(8.2.4)
The solution of the homogeneous PDE leads to the eigenfunctions
φ
n
(x) = sin

L
x,
= 12, . . .
(8.2.5)
and eigenvalues
λ
n
=

L

2
,
= 12, . . .
(8.2.6)
Clearly the eigenfunctions depend on the boundary conditions and the PDE. Having the
eigenfunctions, we now expand the source term
S(x, t) =


n=1
s
n
(t)φ
n
(x),
(8.2.7)
where
s
n
(t) =
(
L
0
S(x, t)φ
n
(x)dx
(
L
0
φ
2
n
(x)dx
.
(8.2.8)
Let
u(x, t) =


n=1
u
n
(t)φ
n
(x),
(8.2.9)
then
(x) = u(x, 0) =


n=1
u
n
(0)φ
n
(x).
(8.2.10)
Since (x) is known, we have
u
n
(0) =
(
L
0
(x)φ
n
(x)dx
(
L
0
φ
2
n
(x)dx
.
(8.2.11)
Substitute u(x, t) from (8.2.9) and its derivatives and S(x, t) from (8.2.7) into (8.2.1), we
have


n=1
˙u
n
(t)φ
n
(x) =


n=1
(
−kλ
n
)u
n
(t)φ
n
(x) +


n=1
s
n
(t)φ
n
(x).
(8.2.12)
Recall that u
xx
gives a series with φ

n
(x) which is
−λ
n
φ
n
, since λ
n
are the eigenvalues corre-
sponding to φ
n
. Combining all three sums in (8.2.12), one has


n=1
˙u
n
(t) + 
n
u
n
(t)
− s
n
(t)
} φ
n
(x) = 0.
(8.2.13)
182

Therefore
˙u
n
(t) + 
n
u
n
(t) = s
n
(t),
= 12, . . .
(8.2.14)
This inhomogeneous ODE should be combined with the initial condition (8.2.11).
The solution of (8.2.14), (8.2.11) is obtained by the method of variation of parameters
(see e.g. Boyce and DiPrima)
u
n
(t) = u
n
(0)e
−λ
n
kt
+

t
0
s
n
(τ )e
−λ
n
k(t−τ )
dτ.
(8.2.15)
It is easy to see that u
n
(t) above satisfies (8.2.11) and (8.2.14). We summarize the solution
by (8.2.9),(8.2.15),(8.2.11) and (8.2.8).
Example
u
t
u
xx
+ 1,
< x < 1
(8.2.16)
u
x
(0, t) = 2,
(8.2.17)
u(1, t) = 0,
(8.2.18)
u(x, 0) = x(1
− x).
(8.2.19)
The function w(x, t) to satisfy the inhomogeneous boundary conditions is
w(x, t) = 2x
− 2.
(8.2.20)
The function
v(x, t) = u(x, t)
− w(x, t)
(8.2.21)
satisfies the following PDE
v
t
v
xx
+ 1,
(8.2.22)
since w
t
w
xx
= 0. The initial condition is
v(x, 0) = x(1
− x− (2x − 2) = x(1 − x) + 2(1 − x) = (+ 2)(1 − x)
(8.2.23)
and the homogeneous boundary conditions are
v
x
(0, t) = 0,
(8.2.24)
v(1, t) = 0.
(8.2.25)
The eigenfunctions φ
n
(x) and eigenvalues λ
n
satisfy
φ

n
(x) + λ
n
φ
n
= 0,
(8.2.26)
φ

n
(0) = 0,
(8.2.27)
φ
n
(1) = 0.
(8.2.28)
Thus
φ
n
(x) = cos(n

1
2
)πx,
= 12, . . .
(8.2.29)
183

λ
n
=

(n

1
2
)π

2
.
(8.2.30)
Expanding S(x, t) = 1 and v(x, t) in these eigenfunctions we have
1 =


n=1
s
n
φ
n
(x)
(8.2.31)
where
s
n
=
(
1
0
1
· cos(n −
1
2
)πxdx
(
1
0
cos
2
(n

1
2
)πxdx
=
4(
1)
n−1
(2n
− 1)π
,
(8.2.32)
and
v(x, t) =


n=1
v
n
(t) cos(n

1
2
)πx.
(8.2.33)
The partial derivatives of v(x, t) required are
v
t
(x, t) =


n=1
˙v
n
(t) cos(n

1
2
)πx,
(8.2.34)
v
xx
(x, t) =



n=1

(n

1
2
)π

2
v
n
(t) cos(n

1
2
)πx.
(8.2.35)
Thus, upon substituting (8.2.34),(8.2.35) and (8.2.31) into (8.2.22), we get
˙v
n
(t) +

(n

1
2
)π

2
v
n
(t) = s
n
.
(8.2.36)
The initial condition v
n
(0) is given by the eigenfunction expansion of v(x, 0), i.e.
(+ 2)(1
− x) =


n=1
v
n
(0) cos(n

1
2
)πx
(8.2.37)
so
v
n
(0) =
(
1
0
(+ 2)(1
− x) cos(n −
1
2
)πxdx
(
1
0
cos
2
(n

1
2
)πxdx
.
(8.2.38)
The solution of (8.2.36) is
v
n
(t) = v
n
(0)e

[
(n−
1
2
)π
]
2
t
s
n

t
0
e

[
(n−
1
2
)π
]
2
(t−τ)

Performing the integration
v
n
(t) = v
n
(0)e

[
(n−
1
2
)π
]
2
t
s
n
1
− e

[
(n−
1
2
)π
]
2
t

(n

1
2
)π

2
(8.2.39)
where v
n
(0), s
n
are given by (8.2.38) and (8.2.32) respectively.
184

Problems
1. Solve the heat equation
u
t
ku
xx
x,
< x < L
subject to the initial condition
u(x, 0) = x(L
− x)
and each of the boundary conditions
a.
u
x
(0, t) = 1,
u(L, t) = t.
b.
u(0, t) = 1,
u
x
(L, t) = 1.
c.
u
x
(0, t) = t,
u
x
(L, t) = t
2
.
2. Solve the heat equation
u
t
u
xx
e
−t
,
< x < π,
t > 0,
subject to the initial condition
u(x, 0) = cos 2x,
< x < π,
and the boundary condition
u
x
(0, t) = u
x
(π, t) = 0.
185

8.3
Forced Vibrations
In this section we solve the inhomogeneous wave equation in two dimensions describing the
forced vibrations of a membrane.
u
tt
c
2

2
S(x, y, t)
(8.3.1)
subject to the boundary condition
u(x, y, t) = 0,
on the boundary,
(8.3.2)
and initial conditions
u(x, y, 0) = α(x, y),
(8.3.3)
u
t
(x, y, 0) = β(x, y).
(8.3.4)
Since the boundary condition is homogeneous, we can expand the solution u(x, y, t) and the
forcing term S(x, y, t) in terms of the eigenfunctions φ
n
(x, y), i.e.
u(x, y, t) =


i=1
u
i
(t)φ
i
(x, y),
(8.3.5)
S(x, y, t) =


i=1
s
i
(t)φ
i
(x, y),
(8.3.6)
where

2
φ
i
=
−λ
i
φ
i
,
(8.3.7)
φ
i
= 0,
on the boundary,
(8.3.8)
and
s
i
(t) =
( (
S(x, y, t)φ
i
(x, y)dxdy
( (
φ
2
i
(x, y)dxdy
.
(8.3.9)
Substituting (8.3.5),(8.3.6) into (8.3.1) we have


i=1
¨
u
i
(t)φ
i
(x, y) = c
2


i=1
u
i
(t)

2
φ
i
+


i=1
s
i
(t)φ
i
(x, y).
Using (8.3.7) and combining all the sums, we get an ODE for the coefficients u
i
(t),
¨
u
i
(t) + c
2
λ
i
u
i
(t) = s
i
(t).
(8.3.10)
The solution can be found in any ODE book,
u
i
(t) = c
1
cos c
+
λ
i
c
2
sin c
+
λ
i
+

t
0
s
i
(τ )
sin c

λ
i
(t
− τ)
c

λ
i
dτ.
(8.3.11)
The initial conditions (8.3.3)-(8.3.4) imply
u
i
(0) = c
1
=
( (
α(x, y)φ
i
(x, y)dxdy
( (
φ
2
i
(x, y)dxdy
,
(8.3.12)
˙u
i
(0) = c
2
c
+
λ
i
=
( (
β(x, y)φ
i
(x, y)dxdy
( (
φ
2
i
(x, y)dxdy
.
(8.3.13)
Equations (8.3.12)-(8.3.13) can be solved for c
1
and c
2
. Thus the solution u(x, y, t) is given
by (8.3.5) with u
i
(t) given by (8.3.11)-(8.3.13) and s
i
(t) are given by (8.3.9).
186

Download 1,53 Mb.

Do'stlaringiz bilan baham:
1   ...   12   13   14   15   16   17   18   19   ...   30




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish