Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  Average Applied Voltage for a Given change in Inductor current



Download 5,69 Mb.
Pdf ko'rish
bet92/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   88   89   90   91   92   93   94   95   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

3.2.3 
Average Applied Voltage for a Given change in Inductor current 
Let us assume that we want to increase the current in an inductor L from I
1
to I
2 
(I
2
I
1
) in a time 
interval of 
D
t. This change may be accomplished by applying any waveform for voltage provided the 
area under that waveform over 
D
t is L(I
2
– I
1
) V-s. This implies that irrespective of the exact waveform 
of voltage applied, its average value over 
D
t has to be L(I
2
– I
1
)/
D
t V. 
Now as 
D
t decreases, i.e., when we try to accomplish the required current change in shorter time 
interval, the average voltage to be applied increases. Thus, fast current change in inductor requires 
higher voltage to be applied across it. 
www.TechnicalBooksPDF.com


The Inductor 
3.13
The amount of current change required in an inductor decides the area-content under 
voltage waveform to be applied to it to bring about the change and the time allowed to 
bring about it decides the average voltage to be applied.
3.2.4 
Instantaneous change in Inductor current 
It follows from the last sub–section that the average voltage to be applied to cause a finite amount of 
change in inductor current increases to infinite value when we try to accomplish the change in current 
in zero time interval. We cannot bring about instantaneous change in inductor current unless we apply 
or support such an infinite voltage across the inductor.
Let us say we want to change the current in a 0.5 H inductor from 0 to 2 A by applying a rectangular 
pulse voltage from t 
=
0. The voltage area content required is 0.5 H 
× 
2 A 
=
1 V-s. The height of pulse 
will depend on the width of pulse. Three cases are shown in Fig. 3.2-2.
When 2.5V pulse lasting for 0.4 s is applied, the inductor current ramps up linearly from 0 to 2A 
in 0.4 s with a slope of 5 A/s. When 5V pulse lasting for 0.2 s is applied, the inductor current ramps 
up linearly from 0 to 2A in 0.2 s with a slope of 10 A/s. When 10 V pulse lasting for 0.1 s is applied, 
the inductor current ramps up linearly from 0 to 2A in 0.1 s with a slope of 20 A/s. We have kept the 
area under the voltage waveform at 1V-s in all the three cases. Now consider further shortening of 
pulse duration, taking it to near-zero width. The change in inductor current will be 2A if the pulse 
height is increased to maintain the area under the voltage waveform at 1V-s. However, the inductor 
current waveform will become steeper and steeper until it becomes a straight-edged waveform as 
pulse width 

0 and pulse height 


. Notice that though pulse height 


as width 

0, its 
area is constrained to remain 1V-s. Such an idealised waveform with zero width, undefined height 
and finite area-content of unity is called a unit impulse function and denoted by the symbol 
d
(t). 
Its formal definition is 
d
d
( )
( )
t
t
undefined at t
t
t dt
=
∞ < ≤
=
≤ < ∞





=

+
−∞
0
0
0
0
0
1
for -
for
and



where the time instant t 
=
0
-
is an instant which is arbitrarily close to t 

0 but on its left side and 
time instant t 
=
0

is an instant which is arbitrarily close to t 

0 but on its right side. Thus the interval 
[0
-
, 0

] is of infinitesimal width; but t 
=
0 comes in the middle of this interval. 
The graphical symbol used for 
d
(t) is shown in Fig. 3.2-2 (b). The height of the arrow-terminated 
vertical line representing 
d
(t) is not the amplitude of the function (amplitude is undefined at that 
point); rather it indicates the area-content of the waveform. The instantaneous change in inductor 
current from 0 to 2A is also shown in the same figure. Now look at the current waveform in the 
inductor. It is zero till 0
-
and 2A after 0

and a discontinuous jump at t 

0. This must be 2 times the 
integral of impulse function (1/L 
=
2 in this case). Let us verify this.
d
( )
;
t dt
t
undefined
t
t
t
=
− ∞ < ≤
=







+
−∞

0
0
0
1
for
at 
for
0
Thiss function is called
unit step function u t
( )
(3.2-4)
www.TechnicalBooksPDF.com


3.14
Single Element Circuits
This function is defined as a unit step function and is denoted by u(t). Thus, when we apply a 
d
(t) voltage waveform to an inductor of inductance value L, the current in the inductor jumps up 
instantaneously by 1/L A. Unit impulse voltage source will dump 1 V-s of voltage area content into 
the inductor instantaneously. Equivalently, unit impulse voltage source will dump 1Weber-turns 
(Wb-T) of flux linkage into the inductor instantaneously. The result will be a change in its current
by 1/L A.
Applied voltage
Current
10
9
8
7
6
5
4
3
2
1
0.1
0.2
(a)
(b)
0.3
0.4
1
2
δ
(
t
)
Time
Time
0.1
0.2
0.3
0.4
Fig. 3.2-2 
Rectangular pulse application and impulse voltage
Current in an inductor cannot change instantaneously unless an impulse voltage is 
applied or supported in the circuit.
The current in an inductor 
L
changes instantaneously by 1/
L
A when the circuit applies 
or supports a unit impulse voltage across it. 
Therefore, if a circuit does not apply or support impulse voltage, the currents in inductors 
in that circuit will be continuous functions of time.
Strictly speaking, it is the flux linkage in an inductor that can not be changed instantaneously. 
However, in the case of an inductor that is not magnetically coupled to other inductors, this will amount 
to what we have stated above since flux linkage in such an inductor is proportional to its current. We 
will modify this statement suitably when we take up the study of coupled circuits later in the book.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   88   89   90   91   92   93   94   95   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish